Решение логических уравнений по математике. Логика

J ∧ ¬K ∧ L ∧ ¬M ∧ (N ∨ ¬N) = 0, где J, K, L, M, N — логические переменные?

Решение.

Выражение (N ∨ ¬N) истинно при любом N, поэтому

J ∧ ¬K ∧ L ∧ ¬M = 0.

Применим отрицание к обеим частям логического уравнения и используем закон де Моргана ¬ (А ∧ В) = ¬ А ∨ ¬ В. Получим ¬J ∨ K ∨ ¬L ∨ M = 1.

Логическая сумма равна 1, если хотя бы одно из составляющих ее высказываний равно 1. Поэтому полученному уравнению удовлетворяют любые комбинации логических переменных кроме случая, когда все входящие в уравнение величины равны 0. Каждая из 4 переменных может быть равна либо 1, либо 0, поэтому всевозможных комбинаций 2·2·2·2 = 16. Следовательно, уравнение имеет 16 −1 = 15 решений.

Осталось заметить, что найденные 15 решений соответствуют любому из двух возможных значений значений логической переменной N, поэтому исходное уравнение имеет 30 решений.

Ответ: 30

Сколько различных решений имеет уравнение

((J → K) → (M ∧ N ∧ L)) ∧ ((J ∧ ¬K) → ¬ (M ∧ N ∧ L)) ∧ (M → J) = 1

где J, K, L, M, N – логические переменные?

В ответе не нужно перечислять все различные наборы значений J, K, L, M и N, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение.

Используем формулы A → B = ¬A ∨ B и ¬(А ∨ В) = ¬А ∧ ¬В

Рассмотрим первую подформулу:

(J → K) → (M ∧ N ∧ L) = ¬(¬J ∨ K) ∨ (M ∧ N ∧ L) = (J ∧ ¬K) ∨ (M ∧ N ∧ L)

Рассмотрим вторую подформулу

(J ∧ ¬K) → ¬(M ∧ N ∧ L) = ¬(J ∧ ¬K) ∨ ¬(M ∧ N ∧ L) = (¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L

Рассмотрим третью подформулу

1) M → J = 1 следовательно,

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (1 ∧ N ∧ L) = ¬K ∨ N ∧ L;

(0 ∨ K) ∨ 0 ∨ ¬N ∨ ¬L = K ∨ ¬N ∨ ¬L;

Объединим:

¬K ∨ N ∧ L ∧ K ∨ ¬N ∨ ¬L = 0 ∨ L ∨ 0 ∨ ¬L = L ∨ ¬L = 1 следовательно, 4 решения.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (0 ∧ N ∧ L) = ¬K;

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (0 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L = K ∨ 1 ∨ ¬N ∨ ¬L

Объединим:

K ∨ 1 ∨ ¬N ∨ ¬L ∧ ¬K = 1 ∨ ¬N ∨ ¬L следовательно, 4 решения.

в) M = 0 J = 0.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (0 ∧ ¬K) ∨ (0 ∧ N ∧ L) = 0.

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (1 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L.

Ответ: 4 + 4 = 8.

Ответ: 8

Сколько различных решений имеет уравнение

((K ∨ L) → (L ∧ M ∧ N)) = 0

где K, L, M, N – логические переменные? В Ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве Ответа Вам нужно указать количество таких наборов.

Решение.

перепишем уравнение, используя более простые обозначения операций:

((K + L) → (L · M · N)) = 0

1) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это равенство верно тогда и только тогда, когда одновременно

K + L = 1 и L · M · N = 0

2) из первого уравнения следует, что хотя бы одна из переменных, K или L, равна 1 (или обе вместе); поэтому рассмотрим три случая

3) если K = 1 и L = 0, то второе равенство выполняется при любых М и N; поскольку существует 4 комбинации двух логических переменных (00, 01, 10 и 11), имеем 4 разных решения

4) если K = 1 и L = 1, то второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

5) если K = 0, то обязательно L = 1 (из первого уравнения); при этом второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

6) всего получаем 4 + 3 + 3 = 10 решений.

Ответ: 10

Сколько различных решений имеет уравнение

(K ∧ L) ∨ (M ∧ N) = 1

Решение.

Выражение истинно в трех случаях, когда (K ∧ L) и (M ∧ N) равны соответственно 01, 11, 10.

1) "01" K ∧ L = 0; M ∧ N = 1, => M, N равны 1, а K и L любые, кроме как одновременно 1. Следовательно 3 решения.

2) "11" K ∧ L = 1; M ∧ N = 1. => 1 решение.

3) "10" K ∧ L = 1; M ∧ N = 0. => 3 решения.

Ответ: 7.

Ответ: 7

Сколько различных решений имеет уравнение

(X ∧ Y ∨ Z) → (Z ∨ P) = 0

где X, Y, Z, P – логические переменные? В ответе не нужно перечислять все различные наборы значений, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Решение.

(X ∧ Y ∨ Z) → (Z ∨ P) = 0 =>

¬(X ∧ Y ∨ Z) ∨ (Z ∨ P) = 0;

(¬X ∨ ¬Y ∧ ¬Z) ∨ (Z ∨ P) = 0;

Логическое ИЛИ ложно только в одном случае: когда оба выражения ложны.

Следовательно,

(Z ∨ P) = 0 => Z = 0, P = 0.

¬X ∨ ¬Y ∧ ¬Z = 0 => ¬X ∨ ¬Y ∧ 1 = 0 =>

¬X ∨ ¬Y = 0 => X = 1; Y = 1.

Следовательно, существует только одно решение уравнения.

Ответ: 1

Сколько различных решений имеет уравнение

(K ∨ L) ∧ (M ∨ N) = 1

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Решение.

Логическое И истинно только в одном случае: когда все выражения истинны.

K ∨ L = 1, M ∨ N = 1.

Каждое из уравнений дает по 3 решения.

Рассмотрим уравнение А ∧ В = 1 если и А и В принимают истинные значения в трех случаях каждое, то в целом уравнение имеет 9 решений.

Следовательно ответ 9.

Ответ: 9

Сколько различных решений имеет уравнение

((A → B)∧ C) ∨ (D ∧ ¬D)= 1,

где A, B, C, D – логические переменные?

В ответе не нужно перечислять все различные наборы значений A, B, C, D, при которых выполнено данное равенство. В качестве ответа вам нужно указать количество таких наборов.

Решение.

Логическое "ИЛИ" истинно, когда истинно хотя бы одно из утверждений.

(D ∧ ¬D)= 0 при любых D.

Следовательно,

(A → B)∧ C) = 1 => C = 1; A → B = 1 => ¬ A ∨ B = 1, что дает нам 3 варианта решений при каждом D.

(D ∧ ¬ D)= 0 при любых D, что дает нам два варианта решений (при D = 1, D = 0).

Следовательно: всего решений 2*3 = 6.

Итого 6 решений.

Ответ: 6

Сколько различных решений имеет уравнение

(¬K ∨ ¬L ∨ ¬M) ∧ (L ∨ ¬M ∨ ¬N) = 0

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Решение.

Применим отрицание к обеим частям уравнения:

(K ∧ L ∧ M) ∨ (¬L ∧ M ∧ N) = 1

Логическое ИЛИ истинно в трех случаях.

Вариант 1.

K ∧ L ∧ M = 1, тогда K, L, M = 1, а ¬L ∧ M ∧ N = 0. N любое, то есть 2 решения.

Вариант 2.

¬L ∧ M ∧ N = 1, тогда N, M = 1; L = 0, K любое, то есть 2 решения.

Следовательно, ответ 4.

Ответ: 4

A, B и С — целые числа, для которых истинно высказывание

¬ (А = B) ∧ ((A > B)→(B > C)) ∧ ((B > A)→(С > B)).

Чему равно В, если A = 45 и C = 43?

Решение.

Обратим внимание, что это сложное высказывание состоит из трех простых

1) ¬(А = B); (A > B)→(B > C); (B > A)→(С > B);

2) эти простые высказывания связаны операцией ∧ (И, конъюнкция), то есть, они должны выполняться одновременно;

3) из ¬(А = B)=1 сразу следует, что А B;

4) предположим, что A > B, тогда из второго условия получаем 1→(B > C)=1; это выражение может быть истинно тогда и только тогда, когда B > C = 1;

5) поэтому имеем A > B > C, этому условию соответствует только число 44;

6) на всякий случай проверим и вариант A 0 →(B > C)=1;

это выражение истинно при любом B; теперь смотрим третье условие получаем

это выражение может быть истинно тогда и только тогда, когда C > B, и тут мы получили противоречие, потому что нет такого числа B, для которого C > B > A.

Ответ: 44.

Ответ: 44

Составьте таблицу истинности для логической функции

X = (А ↔ B) ∨ ¬(A → (B ∨ C))

в которой столбец значений аргумента А представляет собой двоичную запись числа 27, столбец значений аргумента В — числа 77, столбец значений аргумента С — числа 120. Число в столбце записывается сверху вниз от старшего разряда к младшему(включая нулевой набор). Переведите полученную двоичную запись значений функции X в десятичную систему счисления.

Решение.

Запишем уравнение, используя более простые обозначения операций:

1) это выражение с тремя переменными, поэтому в таблице истинности будет строчек; следовательно, двоичная запись чисел, по которым строятся столбцы таблицы А, В и С, должна состоять из 8 цифр

2) переведем числа 27, 77 и 120 в двоичную систему, сразу дополняя запись до 8 знаков нулями в начале чисел

3) вряд ли вы сможете сразу написать значения функции Х для каждой комбинации, поэтому удобно добавить в таблицу дополнительные столбцы для расчета промежуточных результатов (см. таблицу ниже)

X 0
А В С
0 0
0 1 1
0 0 1
1 0 1
1 1 1
0 1 0
1 0 0
1 1 0

4) заполняем столбцы таблицы:

А В С X
0 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0
0 0 1 1 1 1 0 1
1 0 1 0 1 1 0 0
1 1 1 1 1 1 0 1
0 1 0 0 1 1 0 0
1 0 0 0 0 0 1 1
1 1 0 1 1 1 0 1

значение равно 1 только в тех строчках, где А = В

значение равно 1 в тех строчках, где либо В либо С = 1

значение равно 0 только в тех строчках, где А = 1 и В + С = 0

значение — это инверсия предыдущего столбца (0 заменяется на 1, а 1 – на 0)

результат Х (последний столбец) — это логическая сумма двух столбцов и

5) чтобы получить ответ, выписываем биты из столбца Х сверху вниз:

6) переводим это число в десятичную систему:

Ответ: 171

Каково наибольшее целое число X, при котором истинно высказывание (10 (X+1)·(X+2))?

Решение.

Уравнение является операцией импликации между двумя отношениями:

1) Конечно, здесь можно применить тот же способ, что и в примере 2208, однако при этом понадобится решать квадратные уравнения (не хочется…);

2) Заметим, что по условию нас интересуют только целые числа, поэтому можно попытаться как─то преобразовать исходное выражение, получив равносильное высказывание (точные значения корней нас совершенно не интересуют!);

3) Рассмотрим неравенство : очевидно, что может быть как положительным, так и отрицательным числом;

4) Легко проверить, что в области высказывание истинно при всех целых , а в области — при всех целых (чтобы не запутаться, удобнее использовать нестрогие неравенства, и , вместо и );

5) Поэтому для целых можно заменить на равносильное выражение

6) область истинности выражения — объединение двух бесконечных интервалов;

7) Теперь рассмотрим второе неравенство : очевидно, что так же может быть как положительным, так и отрицательным числом;

8) В области высказывание истинно при всех целых , а в области — при всех целых , поэтому для целых можно заменить на равносильное выражение

9) область истинности выражения — закрытый интервал;

10) Заданное выражение истинно везде, кроме областей, где и ;

11) Обратите внимание, что значение уже не подходит, потому что там и , то есть импликация дает 0;

12) При подставлении 2, (10 (2+1) · (2+2)), или 0 → 0 что удовлетворяет условию.

Таким образом, ответ 2.

Ответ: 2

Каково наибольшее целое число X, при котором истинно высказывание

(50 (X+1)·(X+1))?

Решение.

Применим преобразование импликации и преобразуем выражение:

(50 (X+1)·(X+1)) ⇔ ¬(X 2 > 50) ∨ ((X+1) 2) ∨ (|X+1|).

Логическое ИЛИ истинно когда истинно хотя бы одно логическое высказывание. Решив оба неравенства и учитывая, что видим, что наибольшее целое число, при котором выполняется хотя бы одно из них - 7 (на рисунке жёлтым изображено положительное решение второго неравенства, синим - первого).

Ответ: 7

Укажите значения переменных К, L, M, N, при которых логическое выражение

(¬(М ∨ L) ∧ К) → (¬К ∧ ¬М ∨ N)

ложно. Ответ запишите в виде строки из 4 символов: значений переменных К, L, М и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что К=1, L=1, M=0, N=1.

Решение.

Дублирует задание 3584.

Ответ: 1000

(¬K ∨ M) → (¬L ∨ M ∨ N)

Решение.

Применим преобразование импликации:

(K ∧ ¬M) ∨ (¬L ∨ M ∨ N) = 0

Применим отрицание к обоим частям уравнения:

(¬K ∨ M) ∧ L ∧ ¬M ∧ ¬N = 1

Преобразуем:

(¬K ∧ L ∨ M ∧ L) ∧ ¬M ∧ ¬N = 1

Следовательно, M = 0, N = 0, рассмотрим теперь (¬K ∧ L ∨ M ∧ L):

из того, что M = 0, N = 0 следует, что M ∧ L = 0, тогда ¬K ∧ L = 1, то есть K = 0, L = 1.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(¬(M ∨ L) ∧ K) → ((¬K ∧ ¬M) ∨ N)

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение.

Запишем уравнение, используя более простые обозначения операций (условие «выражение ложно» означает, что оно равно логическому нулю):

1) из формулировки условия следует, что выражение должно быть ложно только для одного набора переменных

2) из таблицы истинности операции «импликация» следует, что это выражение ложно тогда и только тогда, когда одновременно

3) первое равенство (логическое произведение равно 1) выполняется тогда и только тогда, когда и ; отсюда следует (логическая сумма равна нулю), что может быть только при ; таким образом, три переменных мы уже определили

4) из второго условия, , при и получаем .

Дублирует задание

Ответ: 1000

Укажите значения логических переменных Р, Q, S, Т, при которых логическое выражение

(Р ∨ ¬Q) ∨ (Q → (S ∨ Т)) ложно.

Ответ запишите в виде строки из четырех символов: значений переменных Р, Q, S, T (в указанном порядке).

Решение.

(1) (Р ∨ ¬Q) = 0

(2) (Q → (S ∨ Т)) = 0

(1) (Р ∨ ¬Q) = 0 => P = 0, Q = 1.

(2) (Q → (S ∨ Т)) = 0 Применим преобразование импликации:

¬Q ∨ S ∨ Т = 0 => S = 0, T = 0.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∨ (L ∧ K) ∨ ¬N

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение.

Логическое "ИЛИ" ложно тогда и только тогда, когда ложны оба утверждения.

(K → M) = 0, (L ∧ K) ∨ ¬N = 0.

Применим преобразование импликации для первого выражения:

¬K ∨ M = 0 => K = 1, M = 0.

Рассмотрим второе выражение:

(L ∧ K) ∨ ¬N = 0 (см. результат первого выражения) => L ∨ ¬N = 0 => L = 0, N = 1.

Ответ: 1001.

Ответ: 1001

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∧ (K → ¬M) ∧ (¬K → (M ∧ ¬L ∧ N))

истинно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

1) (K → M) = 1 Применим преобразование импликации: ¬K ∨ M = 1

2) (K → ¬M) = 1 Применим преобразование импликации: ¬K ∨ ¬M = 1

Отсюда следует, что K = 0.

3) (¬K → (M ∧ ¬L ∧ N)) = 1 Применим преобразование импликации: K ∨ (M ∧ ¬L ∧ N) = 1 из того что K = 0 получаем.

Тема урока: Решение логических уравнений

Образовательная – изучение способов решения логических уравнений, формирование умений и навыков решения логических уравнений и построения логического выражения по таблице истинности;

Развивающая - создать условия для развития познавательного интереса учащихся, способствовать развитию памяти, внимания, логического мышления;

Воспитательная : способствовать воспитанию умения выслушивать мнение других, воспитание воли и настойчивости для достижения конечных результатов.

Тип урока: комбинированный урок

Оборудование: компьютер, мультимедийный проектор, презентация 6.

Ход урока

    Повторение и актуализацию опорных знаний. Проверка домашнего задания (10 минут)

На предыдущих уроках мы познакомились с основными законами алгебры логики, научились использовать эти законы для упрощения логических выражений.

Выполним проверку домашнего задания по упрощению логических выражений:

1. Какое из приведенных слов удовлетворяет логическому условию:

(первая буква согласная→вторая буква согласная) ٨ (последняя буква гласная → предпоследняя буква гласная)? Если таких слов несколько, укажите наименьшее из них.

1) АННА 2) МАРИЯ 3) ОЛЕГ 4) СТЕПАН

Введем обозначения:

А – первая буква согласная

В – вторая буква согласная

С – последняя буква гласная

D – предпоследняя буква гласная

Составим выражение:

Составим таблицу:

2. Укажите, какое логическое выражение равносильно выражению


Упростим запись исходного выражения и предложенных вариантов:

3. Дан фрагмент таблицы истинности выражения F:

Какое выражение соответствует F?


Определим значения этих выражений при указанных значениях аргументов:

    Ознакомление с темой урока, изложение нового материала (30 минут)

Мы продолжаем изучать основы логики и тема нашего сегодняшнего урока «Решение логических уравнений». Изучив данную тему, вы узнаете основные способы решения логических уравнений, получите навыки решения этих уравнений путем использования языка алгебры логики и умения составления логического выражения по таблице истинности.

1. Решить логическое уравнение

(¬K M) → (¬L M N) =0

Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Решение:

Преобразуем выражение (¬K M) → (¬L M N)

Выражение ложно, когда оба слагаемые ложны. Второе слагаемое равно 0, если M =0, N =0, L =1. В первом слагаемом K =0, так как М=0, а
.

Ответ: 0100

2. Сколько решений имеет уравнение (в ответе укажите только число)?

Решение: преобразуем выражение

(A +B )*(C +D )=1

A +B =1 и C +D =1

2 способ: составление таблицы истинности

3 способ : построение СДНФ – совершенной дизъюнктивной нормальной формы для функции – дизъюнкции полных правильных элементарных конъюнкций.

Преобразуем исходное выражение, раскроем скобки для того, чтобы получить дизъюнкцию конъюнкций:

(A+B)*(C+D)=A*C+B*C+A*D+B*D=

Дополним конъюнкции до полных конъюнкций (произведение всех аргументов), раскроем скобки:

Учтем одинаковые конъюнкции:

В итоге получаем СДНФ, содержащую 9 конъюнкций. Следовательно, таблица истинности для данной функции имеет значение 1 на 9 строках из 2 4 =16 наборов значений переменных.

3. Сколько решений имеет уравнение (в ответе укажите только число)?

Упростим выражение:

,

3 способ : построение СДНФ

Учтем одинаковые конъюнкции:

В итоге получаем СДНФ, содержащую 5 конъюнкций. Следовательно таблица истинности для данной функции имеет значение 1 на 5 строках из 2 4 =16 наборов значений переменных.

Построение логического выражения по таблице истинности:

для каждой строки таблицы истинности, содержащей 1 составляем произведение аргументов, причем, переменные, равные 0, входят в произведение с отрицанием, а переменные, равные 1 – без отрицания. Искомое выражение F будет составляется из суммы полученных произведений. Затем, если возможно, это выражение необходимо упростить.

Пример: дана таблица истинности выражения. Построить логическое выражение.

Решение:

3. Задание на дом (5 минут)

    Решить уравнение:

    Сколько решений имеет уравнение (в ответе укажите только число)?

    По заданной таблице истинности составить логическое выражение и

упростить его.

Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности и декомпозиция.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0, B=0 и C=1.

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A=0, B=0 и C=1.

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда:

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0, B = 0 и C = 1.

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A →B ) + (C →D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A →B и Y = C →D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

(x 1 x 2 )*(x 2 x 3 )*…*(x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассужд ниях и построении де рева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)

Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

Инструкция . При вводе с клавиатуры используйте следующие обозначения:

Логическое выражение :

Вывод промежуточных таблиц для таблицы истинности
Построение СКНФ
Построение СДНФ
Построение полинома Жегалкина
Построение карты Вейча-Карно
Минимизация булевой функции
Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис .

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
Если определены не все значения, функция называется частично определённой.
Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
Для представления функции алгебры логики используется следующие способы:
По алгебраической форме можно построить схему логического устройства, используя логические элементы.


Рисунок1- Схема логического устройства

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Операция НЕ - логическое отрицание (инверсия)

Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
  • если исходное выражение истинно, то результат его отрицания будет ложным;
  • если исходное выражение ложно, то результат его отрицания будет истинным.
Для операции отрицания НЕ приняты следующие условные обозначения:
не А, Ā, not A, ¬А, !A
Результат операции отрицания НЕ определяется следующей таблицей истинности:
A не А
0 1
1 0

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
Применяемые обозначения: А или В, А V В, A or B, A||B.
Результат операции ИЛИ определяется следующей таблицей истинности:
Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

Операция И - логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
Применяемые обозначения: А и В, А Λ В, A & B, A and B.
Результат операции И определяется следующей таблицей истинности:
A B А и B
0 0 0
0 1 0
1 0 0
1 1 1

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Операция «ЕСЛИ-ТО» - логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
Применяемые обозначения:
если А, то В; А влечет В; if A then В; А→ В.
Таблица истинности:
A B А → B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Применяемое обозначение: А ↔ В, А ~ В.
Таблица истинности:
A B А↔B
0 0 1
0 1 0
1 0 0
1 1 1

Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

Применяемое обозначение: А XOR В, А ⊕ В.
Таблица истинности:
A B А⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Приоритет логических операций

  • Действия в скобках
  • Инверсия
  • Конъюнкция (&)
  • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
  • Импликация (→)
  • Эквивалентность (↔)

Совершенная дизъюнктивная нормальная форма

Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
  1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все логические слагаемые формулы различны.
  3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
  4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

Совершенная конъюнктивная нормальная форма

Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
  1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все элементарные дизъюнкции различны.
  3. Каждая элементарная дизъюнкция содержит переменную один раз.
  4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 18»

городского округа город Салават Республики Башкортостан

Системы логических уравнений

в задачах ЕГЭ по информатике

Раздел «Основы алгебры логики» в заданиях ЕГЭ считается одним из самых сложных и плохо решаемых. Средний процент выполнения заданий по данной теме самый низкий и составляет 43,2.

Раздел курса

Средний процент выполнения по группам заданий

Кодирование информации и измерение ее количества

Информационное моделирование

Системы счисления

Основы алгебры логики

Алгоритмизация и программирование

Основы информационно- коммуникационных технологий

Исходя из спецификации КИМа 2018 года этот блок включает четыре задания разного уровня сложности.

задания

Проверяемые

элементы содержания

Уровень сложности задания

Умение строить таблицы истинности и логические схемы

Умение осуществлять поиск информации в сети Интернет

Знание основных понятий и законов

математической логики

Умение строить и преобразовывать логические выражения

Задание 23 является высоким по уровню сложности, поэтому имеет самый низкий процент выполнения. Среди подготовленных выпускников (81-100 баллов) 49,8% выполнивших, средне подготовленные (61-80 баллов) справляются на 13,7%, оставшаяся группа учеников данное задание не выполняет.

Успешность решения системы логических уравнений зависит от знания законов логики и от четкого применения методов решения системы.

Рассмотрим решение системы логических уравнений методом отображения.

(23.154 Поляков К.Ю.) Сколько различных решений имеет система уравнений?

((x 1 y 1 ) (x 2 y 2 )) (x 1 x 2 ) (y 1 y 2 ) =1

((x 2 y 2 ) (x 3 y 3 )) (x 2 x 3 ) (y 2 y 3 ) =1

((x 7 y 7 ) (x 8 y 8 )) (x 7 x 8 ) (y 7 y 8 ) =1

где x 1 , x 2 ,…, x 8, у 1 2 ,…,у 8 - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение . Все уравнения, включенные в систему, однотипны, и в каждое уравнение включено четыре переменных. Зная x1 и y1, можем найти все возможные значения x2 и y2, удовлетворяющие первому уравнению. Рассуждая аналогичным образом, из известных x2 и y2можем найти x3, y3, удовлетворяющее второму уравнению. То есть, зная пару (x1 , y1) и определив значение пары (x2 , y2) , мы найдем пару (x3 , y3 ), которая, в свою очередь, приведет к паре (x4 , y4 ) и так далее.

Найдем все решения первого уравнения. Это можно сделать двумя способами: построить таблицу истинности, через рассуждения и применение законов логики.

Таблица истинности:

x 1 y 1

x 2 y 2

(x 1 y 1 ) (x 2 y 2 )

(x 1 x 2 )

(y 1 y 2 )

(x 1 x 2 ) (y 1 y 2 )

Построение таблицы истинности трудоемко и неэффективно по времени, поэтому применяем второй способ - логические рассуждения. Произведение равно 1 тогда и только тогда, когда каждый множитель равен 1.

(x 1 y 1 ) (x 2 y 2 ))=1

(x 1 x 2 ) =1

(y 1 y 2 ) =1

Рассмотрим первое уравнение. Следование равно 1, когда 0 0, 0 1, 1 1, значит (x1 y1)=0 при (01), (10), то пара (x 2 y 2 ) может быть любой (00), (01), (10), (11), а при (x1 y1)=1, то есть (00) и (11) пара (x2 y2)=1 принимает такие же значения (00) и (11). Исключим из этого решения те пары, для которых ложны второе и третье уравнения, то есть x1=1, x2=0, y1=1, y2=0.

(x 1 , y 1 )

(x 2 , y 2 )

Общее количество пар 1+1+1+22=25

2) (23.160 Поляков К.Ю.) Сколько различных решений имеет система логических уравнений

(x 1 (x 2 y 2 )) (y 1 y 2 ) = 1

(x 2 (x 3 y 3 )) (y 2 y 3 ) = 1

...

( x 6 ( x 7 y 7 )) ( y 6 y 7 ) = 1

x 7 y 7 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,y1), (x2,y2) первого уравнения.

(x 1 (x 2 y 2 ))=1

(y 1 y 2 ) = 1

Решением второго уравнения являются пары (00), (01), (11).

Найдем решения первого уравнения. Если x1=0, то x2 , y2 - любые, если x1=1, то x2 , y2 принимает значение (11).

Составим связи между парами (x1 , y1) и (x2 , y2).

(x 1 , y 1 )

(x 2 , y 2 )

Составим таблицу для вычисления количества пар на каждом этапе.

0

Учитывая решения последнего уравнения x 7 y 7 = 1, исключим пару (10). Находим общее число решений 1+7+0+34=42

3)(23.180) Сколько различных решений имеет система логических уравнений

(x 1 x 2 ) (x 3 x 4 ) = 1

(x 3 x 4 ) (x 5 x 6 ) = 1

(x 5 x 6 ) (x 7 x 8 ) = 1

(x 7 x 8 ) (x 9 x 10 ) = 1

x 1 x 3 x 5 x 7 x 9 = 1

Решение. 1) Уравнения однотипные, поэтому методом рассуждения найдем всевозможные пары (x1,x2), (x3,x4) первого уравнения.

(x 1 x 2 ) (x 3 x 4 ) = 1

Исключим из решения пары, которые в следовании дают 0 (1 0), это пары (01, 00, 11) и (10).

Составим связи между парами (x1,x2), (x3,x4)

Случайные статьи

Вверх