Реферат: Методы исследования нелинейных систем. Анализ нелинейных систем автоматического управления Методы исследования линейных систем

Характеристика, показанная на рисунке 1.5 б – это трёхпозиционное реле, в котором дополнительная позиция за счёт нечувствительности. Уравнение такой характеристики

x вых

x вх

< a ,

x вых

B siqn(xвх )

x вх

> a .

Характеристика, показанная на рисунке 1.5 в – это двухпозиционное реле с гистерезисом. Его ещё называют “реле с памятью”. Оно “помнит” своё предыдущее состояние и в пределах x вх < a сохраняет это своё значение. Уравне-

ние такой характеристики

xвых = b siqn(x − а)

x вх > 0 ,

xвых = b siqn(x + а)

x вх < 0 ,

x вых = + b

xвх > − a ;

x& вх < 0,

x вых = − b

xвх < a;

xвх > 0,

Характеристика, показанная на рисунке 1.5 г – это трёхпозиционное реле с гистерезисом, в котором дополнительная позиция за счёт зоны нечувствительности. Уравнение такой характеристики

x вых =

[ siqn(x − а2

) + siqn(x + а1 )]

x вх > 0 ,

x вых =

[ siqn(x + а2

) + siqn(x − а1 )]

x вх < 0 .

Из приведённых уравнений видно, что при отсутствии петли гистерезиса выходное воздействие реле зависит только от значения х вх или x вых = f (x вх ) .

При наличии петли гистерезиса значение x вых зависит ещё от производной по x вх или x вых = f (x вх ,x & вх ) , где x & вх характеризует наличие “памяти” у реле.

1.4 Анализ методов исследования нелинейных систем

Для решения задач анализа и синтеза нелинейной системы прежде всего необходимо построить ее математическую модель, которая характеризует связь выходных сигналов системы, с сигналами отражающих приложенные к системе воздействия. В результате получаем нелинейное дифференциальное уравнение высокого порядка, иногда с рядом логических соотношений. Современная вычислительная техника позволяет решать любые нелинейные уравнения и потребуется решить невероятно большое количество этих нелинейных дифференциальных уравнений. Затем выбрать наилучшее из них. Но при этом нельзя быть уверенным в том, что выбранное решение действительно оптимальное и неизвестно как улучшить выбранное решение. Поэтому одна из задач теории управления следующая .

Создание таких методов проектирования системы управления, которые позволяют определить наилучшую структуру и оптимальные соотношения параметров системы.

Для выполнения этой задачи нужны такие методы расчета, которые по-

зволяют в достаточно простом виде определяют математические связи параметров нелинейной системы с динамическими показателями процесса управ-

ления. И при этом без нахождения решения нелинейного дифференциального уравнения. Для решения поставленной задачи нелинейные характеристики реальных элементов системы заменяют некоторыми идеализированными приближенными характеристиками. Расчет нелинейных систем по таким характеристикам дает приближенные результаты, но главное в том, что полученные зависимости позволяют связать структуру и параметры системы с ее динамическими свойствами.

В простейших случаях и в основном для нелинейной системы второго порядка применяется метод фазовых траекторий , который позволяет наглядно показать динамику движения нелинейной системы при различных видах нелинейного звена с учетом начальных условий. Однако по этому методу трудно учесть различные внешние воздействия.

Для системы высокого порядка используется метод гармонической линеаризации . При обычной линеаризации нелинейная характеристика рассматривается как линейная и теряет некоторые свойства. При гармонической линеаризации специфические свойства нелинейного звена сохраняются. Но этот метод является приближенным. Он используется при выполнении ряда условий, которые будут показаны при расчете нелинейной системы по этому методу. Важное свойство этого метода в том, что он непосредственно связывает параметры системы с динамическими показателями процесса регулирования.

Для определения статистической ошибки регулирования при случайных воздействиях используют метод статистической линеаризации . Сущность этого метода в том, что нелинейный элемент заменяется эквивалентным линейным элементом, который одинаково с нелинейным элементом преобразует два первых статистических момента случайной функции: математическое ожидание (среднее значение) и дисперсию (или среднее квадратическое отклонение). Есть и другие методы анализа нелинейных систем. Например, метод малого параметра в форме Б.В. Булгакова. Асимптотический метод Н.М. Крылова и Н.Н. Боголюбова для анализа процесса во времени вблизи периодического решения. Графо-аналитический метод позволяет нелинейную задачу свести к линейной. Метод гармонического баланса , который использовал Л.С. Гольдфарб для анализа устойчивости нелинейных систем по критерию Найквиста. Графоаналитические методы , среди которых наибольшее распространение получил метод Д.А. Башкирова. Из всего многообразия методов исследования в данном учебном пособии будут рассмотрены: метод фазовых траекторий, метод точечных преобразований, метод гармонической линеаризации Е.П. Попова, графо-аналитический метод Л.С. Гольдфарба, критерий абсолютной устойчивости В.М. Попова, метод статистической линеаризации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Новосибирский государственный технический университет

Кафедра электропривода и автоматизации промышленных установок

КУРСОВАЯРАБОТА

по дисциплине «Теория автоматического управления»

Анализ нелинейных систем автоматического управления

Студент: Тишининов Ю.С.

Группа Эма-71

Руководитель курсовой работы

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ:

1. Исследовать САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом фазовой плоскости.

1.1 Проверить результаты расчетов по пункту 1 с помощью структурного моделирования.

1.2 Исследовать влияние входного воздействия и параметров нелинейности на динамику системы.

2. Исследовать САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом гармонической линеаризации.

2.1 Проверить результаты расчетов по пункту 2 с помощью структурного моделирования.

2.2 Исследовать влияние входного воздействия и параметров нелинейности на динамику системы

1. Исследуем САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом фазовой плоскости.

Вариант №4-1-а

Исходные данные.

1) Структурная схема нелинейной САУ:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Система, в которой рабочие операции и операции управления выполняют технические устройства, называется системой автоматического управления (САУ) .

Структурной схемой называется графическое изображение математического описания системы.

Звено на структурной схеме изображается в виде прямоугольника с указанием внешних воздействий и внутри него записывается передаточная функция.

Совокупность звеньев совместно с линиями связи, характеризующими их взаимодействие, образует структурную схему.

2) Параметры структурной схемы:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Метод фазовой плоскости

Поведение нелинейной системы в любой момент времени определяется управляемой переменной и ее (n?1) производной, если эти величины отложить по осям координат, то полученное n?мерное пространство будет называться фазовым пространством. Состояние системы в каждый момент времени будет определяться в фазовом пространстве изображающей точкой. Во время переходного процесса изображающая точка перемещается в фазовом пространстве. Траектория ее движения называется фазовой траекторией. В установившемся режиме изображающая точка находится в состоянии покоя и называется особой точкой. Совокупность фазовых траекторий для различных начальных условий, совместно с особыми точками и траекториями называется фазовым портретом системы.

При исследовании нелинейной системы данным методом необходимо структурную схему (рис. 1.1) преобразовать к виду:

Знак минус говорит о том, что обратная связь отрицательная.

где X 1 и X 2 - выходная и входная величины линейной части системы соответственно.

Найдем дифференциальное уравнение системы:

Произведем замену, тогда

Решим это уравнение относительно старшей производной:

Положим, что:

Разделим уравнение (1.2) на уравнение (1.1) и получим нелинейное дифференциальное уравнение фазовой траектории:

где x 2 = f(x 1).

Если решать это ДУ методом изоклин, то можно построить фазовый портрет системы для различных начальных условий.

Изоклиной называется геометрическое место точек фазовой плоскости, которые фазовая траектория пересекает под одним и тем же углом.

В данном методе нелинейная характеристика делится на линейные участки и для каждого из них записывается линейное ДУ.

Для получения уравнения изоклины правая часть уравнения (1.3) приравнивается к постоянной величине N и решается относительно.

Учитывая нелинейность, получаем:

Задаваясь значениями N в диапазоне от до, строится семейство изоклин. На каждой изоклине проводится вспомогательная прямая под углом к оси абсцисс

где m X - масштабный коэффициент по оси х;

m Y - масштабный коэффициент по оси у.

Выбираем m X = 0,2 ед/см, m Y = 40 ед/см;

Конечная формула для угла:

Рассчитаем семейство изоклин и угол для участка, расчет сведем в таблицу 1:

Таблица 1

Рассчитаем семейство изоклин и угол для участка, расчет сведем в таблицу 2:

Таблица 2

Рассчитаем семейство изоклин и угол для участка, расчет сведем в таблицу 3:

Таблица 3

Построим фазовую траекторию

Для этого выбираются начальные условия на одной из изоклин (точка А), из точки А проводятся две прямые линии до пересечения со следующей изоклиной под углами б 1 , б 2 , где б 1 , б 2 ? соответственно углы первой и второй изоклины. Отрезок, отсекаемый этими линиями, делится пополам. Из полученной точки, середины отрезка, вновь проводятся две линии под углами б 2 , б 3 , и вновь отрезок делится пополам и т.д. Полученные точки соединяются плавной кривой.

Семейства изоклин строятся для каждого линейного участка нелинейной характеристики и разделяются между собой линиями переключения.

По фазовой траектории видно, что получена особая точка типа устойчивый фокус. Можно сделать вывод, что автоколебаний в системе нет, а переходный процесс устойчивый.

1.1 Проверим результаты расчетов с помощью структурного моделирования в программе MathLab

Структурная схема:

Фазовый портрет:

Переходный процесс при входном воздействии равном 2:

Xвых.max = 1.6

1.2 Исследуем влияние входного воздействия и параметров нелинейности на динамику системы

Увеличим входной сигнал до 10:

Xвых.max = 14,3

Трег = 0,055

X вых. max = 103

Т рег = 0,18

Увеличим зону чувствительности до 15:

Xвых.max = 0,81

Уменьшим зону чувствительности до 1:

Xвых.max = 3.2

Результатами моделирования были подтверждены результаты расчетов: из рисунка 1.7 видно, что процесс сходящийся, автоколебаний в системе нет. Фазовый портрет смоделированной системы схож с построенным расчетным путем.

Исследовав влияние входного воздействия и параметров нелинейности на динамику системы, можно сделать выводы:

1) при увеличении входного воздействия увеличивается уровень установившегося режима, количество колебаний не меняется, время регулирования увеличивается.

2) при увеличении мертвой зоны уровень установившегося режима увеличивается, количество колебаний также остается неизменным, время регулирования увеличивается.

2. Исследуем САУ с заданной структурной схемой, видом нелинейности и числовыми параметрами методом гармонической линеаризации.

Вариант №5-20-c

Исходные данные.

1) Структурная схема:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

2) Значения параметров:

3) Вид и параметры нелинейности:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Наиболее широкое распространение для исследования нелинейных САУ высокого порядка (n > 2) получил приближенный метод гармонической линеаризации с применением частотных представлений, развитых в теории линейных систем.

Основная идея метода сводится к следующему. Пусть замкнутая автономная (без внешних воздействий) нелинейная система состоит из последовательно включённых нелинейного безынерционного НЗ и устойчивой или нейтральной линейной части ЛЧ (рис 2.3, а)

u=0 x z Х=Х m sinwt z y

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

y = Y m 1 sin (wt +)

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Для суждения о возможности существования моногармонических незатухающих колебаний в этой системе предполагается, что на входе нелинейного звена действует гармонический синусоидальный сигнал x(t) = X m sinwt (Рис. 2.3,б). При этом сигнал на выходе нелинейного звена z(t) = z содержит спектр гармонических составляющих с амплитудами Z m 1 , Z m 2 , Z m 3 , и т.д. и частотами w, 2w, 3w и т.д. Предполагается, что этот сигнал z(t), проходя через линейную часть W л (jw), фильтруется ею в такой степени, что в сигнале на выходе линейной части y(t) можно пренебречь всеми высшими гармониками Y m 2 , Y m 3 и т.д. и считать, что

y(t)Y m 1 sin(wt +)

Последнее предположение носит название гипотезы фильтра и выполнение этой гипотезы является необходимым условием гармонической линеаризации.

Условие эквивалентности схем, изображенных на рис. 2.3, а и б, можно сформулировать в виде равенства

x(t) + y(t) = 0(1)

При выполнении гипотезы фильтра y(t) = Y m 1 sin(wt +) уравнение (1) распадается на два

Уравнение (2) и (3) носят название уравнений гармонического баланса; первое из них выражает баланс амплитуд, а второе - баланс фаз гармонических колебаний.

Таким образом, для того, чтобы в рассматриваемой системе существовали незатухающие гармонические колебания, при соблюдении гипотезы фильтра должны выполняться условия (2) и (3)

Воспользуемся методом Гольдфарба для графоаналитического решения характеристического уравнения вида

W ЛЧ (p) W НЭ (A) +1 = 0

W ЛЧ (jw) W НЭ (A) = -1

Для приближенного определения автоколебаний строятся АФЧХ линейной части системы и обратная отрицательная характеристика нелинейного элемента.

Для построения АФЧХ линейной части преобразуем структурную схему к виду рис 2.4:

В результате преобразования получаем схему рис 2.5:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Найдем передаточную функцию линейной части системы:

Избавимся от иррациональности в знаменателе, домножив числитель и знаменатель на сопряженное к знаменателю, получим:

Разобьем получившееся на мнимую и действительную части:

Для построения обратной отрицательной характеристики нелинейного элемента воспользуемся формулой:

Параметры нелинейности:

А - амплитуда, при условии что.

АФЧХ линейной части системы и обратная отрицательная характеристика нелинейного элемента, представлена на рис. 2.6:

Для определения устойчивости автоколебаний воспользуемся следующей формулировкой: если точка соответствующая увеличенной амплитуде по сравнению с точкой пересечения не охватывается частотной характеристикой линейной части системы, то автоколебания устойчивые. Как видно из рисунка 2.6 решение устойчиво, следовательно, в системе устанавливаются автоколебания.

2.1 Проверим результаты расчетов с помощью структурного моделирования в программе MathLab.

Рис 2.7: Структурная схема

Переходный процесс при входном воздействии равном 1 (рис 2.8):

автоматический управление нелинейный гармонический

Как видно из графика устанавливаются автоколебания. Проверим влияние нелинейности на устойчивость системы.

2.2 Исследуем влияние входного воздействия и параметров нелинейности на динамику системы.

Увеличим входной сигнал до 100:

Увеличим входной сигнал до 270

Уменьшим входной сигнал до 50:

Увеличим насыщение до 200:

Уменьшим насыщение до 25:

Уменьшим насыщение до 10:

Результатами моделирования не однозначно подтвердили результаты расчетов:

1) Автоколебания возникают в системе, а изменение насыщения влияет на амплитуду колебаний.

2) При увеличении входного воздействия изменяется величина выходного сигнала и система стремиться к устойчивому состоянию.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ:

1. Сборник задач по теории автоматического регулирования и управления. Под ред. В.А. Бесекерского, издание пятое, переработанное. - М.: Наука, 1978. - 512 с.

2. Теория автоматического управления. Ч. II. Теория нелинейных и специальных систем автоматического управления. Под ред. А.А.Воронова. Учеб. пособие для вузов. - М.: Высш. школа, 1977. - 288 с.

3. Топчеев Ю.И. Атлас для проектирования систем автоматического регулирования: учеб. пособие. ? М.: Машиностроение, 1989. ? 752 с.

Размещено на Allbest.ru

Подобные документы

    Нелинейные системы, описываемые нелинейными дифференциальными уравнениями. Методы анализа нелинейных систем: кусочно-линейной аппроксимации, гармонической линеаризации, фазовой плоскости, статистической линеаризации. Использование комбинации методов.

    реферат , добавлен 21.01.2009

    Анализ устойчивости системы автоматического управления (САУ) по критерию Найквиста. Исследование устойчивости САУ по амплитудно-фазочастотной характеристике АФЧХ и по логарифмическим характеристикам. Инструменты управления приборной следящей системы.

    курсовая работа , добавлен 11.11.2009

    Анализ структурной схемы заданной системы автоматического управления. Основные условия устойчивости критерия Гурвица и Найквиста. Синтез как выбор структуры и параметров системы для удовлетворения заранее поставленных требований. Понятие устойчивости.

    курсовая работа , добавлен 10.01.2013

    Исследование режимов системы автоматического управления. Определение передаточной функции замкнутой системы. Построение логарифмических амплитудной и фазовой частотных характеристик. Синтез системы "объект-регулятор", расчет оптимальных параметров.

    курсовая работа , добавлен 17.06.2011

    Проектирование замкнутой, одномерой, стационарной, следящей системы автоматического управления с определением параметров корректирующего устройства, обеспечивающего заданные требования к качеству регулирования. Анализ системы с учетом нелинейности УМ.

    курсовая работа , добавлен 18.01.2011

    Структура замкнутой линейной непрерывной системы автоматического управления. Анализ передаточной функции системы с обратной связью. Исследование линейной импульсной, линейной непрерывной и нелинейной непрерывной систем автоматического управления.

    контрольная работа , добавлен 16.01.2011

    Уравнения связей структурной схемы САУ. Анализ линейной непрерывной системы автоматического управления. Критерии устойчивости. Показатели качества переходных процессов при моделировании на ЭВМ. Синтез последовательного корректирующего устройства.

    контрольная работа , добавлен 19.01.2016

    Проектирование структурной схемы электромеханического релейного следящего привода. Составление дифференциальных уравнений замкнутой нелинейной системы автоматического управления, построение ее фазового портрета. Гармоническая линеаризация нелинейности.

    курсовая работа , добавлен 26.02.2014

    Дискретные системы автоматического управления как системы, содержащие элементы, которые преобразуют непрерывный сигнал в дискретный. Импульсный элемент (ИЭ), его математическое описание. Цифровая система автоматического управления, методы ее расчета.

    реферат , добавлен 18.08.2009

    Выполнение синтеза и анализа следящей системы автоматического управления с помощью ЛАЧХ и ЛФЧХ. Определение типов звеньев передаточных функций системы и устойчивости граничных параметров. Расчет статистических и логарифмических характеристик системы.

Критерий устойчивости Попова В.М.

(румынский ученый)

Это частотный метод исследования устойчивости НЛ САУ с однозначной нелинейностью, удовлетворяющей условию

Рассматривается устойчивость положения равновесия


Достаточные условия абсолютной устойчивости таких систем сформулированы Поповым В.М.

1.Вводится передаточная функция

Предполагается, что
соответствует асимптотически устойчивой системе (проверяется по любому из критериев устойчивости).

2.Находится частотная характеристика
.

3.Строится видоизмененная частотная характеристика
,

которая определяется соотношением

Re
=Re
,

Im
= .

4.На комплексной плоскости строится
.

Критерий Попова:

Если через точку
на действительной оси можно провести прямую линию так, чтобы видоизмененная АФЧХ
лежала по одну сторону от этой прямой, то замкнутая НЛ САУбудет абсолютно устойчива.

Пример. Исследовать абсолютную устойчивость НЛ САУ со структурной схемой рис.1, если

Так как все в характеристическом уравнении 2-го порядка больше нуля, то
- асимптотически устойчива и, следовательно, условие (1) критерия устойчивости Попова выполняется.

Re
=Re
=

Im
=Im
=

Строим АФЧХ
.

Асимптотическая устойчивость для специального вида

нелинейных характеристик

1.Неоднозначная нелинейная характеристика

Состояние покоя будет абсолютно устойчивым, если

1.
соответствует асимптотически устойчивой системе.

2.

2.Система с релейной характеристикой

r =0 . Это частный случай рассмотренной выше характеристики.

Достаточное условие абсолютной устойчивости – вместо условия (2)

3.Нелинейность типа реле

1.
- асимптотически устойчива.

2.Im

Абсолютная устойчивость процессов

Рассмотрим теперь устойчивость не систем стабилизации (номинальный режим – состояние покоя), а случай, когда номинальный режим характеризуется входным сигналом
и выходным сигналом
, которые являютсяограниченными непрерывными функциями времени.

Будем предполагать, что нелинейный элемент имеет вид
, где
- непрерывная однозначная функция, удовлетворяющая условию

т.е. ограничена скорость изменения нелинейной характеристики. Это достаточно жесткое условие.

В этом случае для обеспечения абсолютной устойчивости ограниченного процесса
,
достаточно, чтобы выполнялись условия6

1.
- было асимптотически устойчива.

2.
.

В частном случае, когда r =0

или

Теория, связанная с развитием идей Попова еще не закончена, здесь возможны новые более сильные результаты. Сводка таких результатов на сегодняшний день имеется в книге Наумова «Нелинейные системы автоматического управления».

Приближенные методы исследования нелинейных сау

Метод гармонического баланса

При исследовании НЛ САУ иногда можно наблюдать появление периодических изменений выходной величины у(t ) даже в тех случаях, когда
Если при изучении САУ ограничитьсялинейной моделью с постоянными коэффициентами, то указанное явление (собственные колебания) может иметь место только при наличии в характеристическом уравнении чисто мнимых корней
.

Однако при таком объяснении малое изменение параметров системы «сдвинет» корень с мнимой оси налево или направо и собственные колебания либо затухают либо раскачиваются. На практике же в нелинейных системах периодические колебания выходного сигнала сохраняются при малых изменениях параметров системы.

Такого рода незатухающие колебания объясняются нелинейным характером системы. Они называются автоколебаниями.

Рассмотрим метод гармонического баланса, который позволяет по взаимному протеканию АФЧХ линейной части и и характеристики нелинейного элемента определить наличие или отсутствия автоколебаний.

Рассмотрим одноконтурную систему, в которой выделяется нелинейный элемент

(1)

и линейная часть с передаточной функцией
.

Предполагается:

1.
соответствует устойчивой системе,

2. нелинейная характеристика
- нечетная симметричная, т.е.

,

3.входной сигнал
, т.е. это система стабилизации.

Будем искать выходной сигнал у(t ) в виде

, (2)

где - амплитуда автоколебаний,

- частота автоколебаний.

и надо определить.

Гипотеза о синусоидальном характере у(t ) выглядит произвольной. Однако далее будут приведены условия, при выполнении которых эта гипотеза становится естественной.

Поскольку
,(3)

Пропустим сигнал
последовательно через нелинейный элемент и линейную часть и найдем уравнения, их которых можно будет определить амплитудуи частотуавтоколебаний в НЛ САУ.

Прохождение
через линейный элемент

Так как
-
периодическая функция, то сигнал
на выходе нелинейного элемента также будет периодической функцией, но отличной от синусоиды.

Спектр
Спектр

Как известно, любая периодическая функция может быть представлена рядом Фурье:

(4)

Мы предполагаем, что свободный член в формуле (4) равен нулю. Это будет иметь место, например, когда характеристика нелинейного элемента удовлетворяет условию


, т.е это нечетная функция.

Здесь коэффициенты Фурье иопределяются:

,

(5)

Преобразуем (4) , умножив и поделив каждый член в правой части на
(6)


.

Напомним, что


(8)

Таким образом при прохождении сигала
через нелинейный элемент, на выходе нелинейного элемента сигал
содержит множество гармоник, кратных. (см. рисунок выше).

Прохождение сигнала
через линейную часть

Из теории линейных систем мы знаем, что если на вход линейного звена с передаточной функцией
, соответствующей устойчивой системе, подать гармонический сигналто в установившемся режиме на выходе этого звена будет сигнал.

Здесь
- модуль частотной характеристики
в точке,

аргумент
.

Используя эти соотношения, мы можем выписать выражения для
, пропуская по отдельности через линейную часть все составляющие ряда (8) и суммируя затем полученные выражения для

В силу линейности системы такая процедура законна.

Получим, полагая
:

Полученное выражение (9) для
имеет достаточно сложную структуру. Его можно существенно упростить, используягипотезу фильтра.

Изучая частотные характеристики типовых элементарных звеньев, мы видели, что их АЧХ стремятся к нулю при

Гипотеза фильтра состоит в том, что АЧХ в правой части (9) убывает с ростом частоты настолько быстро, что в (9) можно учитывать лишь первый член, соответствующий к=1 , и считать остальные члены пренебрежимо малыми. Другими словами – гипотеза фильтра – это гипотеза о том, что линейная часть САУ практически не пропускает высокочастотные колебания. Поэтому формула (9) (и в этом состоит приближенность метода) упрощается следующим образом:

Таким образом, при замыкании системы в предположении гипотезы фильтра мы получим баланс гармоник (отсюда и название метода – метод гармонического баланса)

Рассмотрим как с помощью метода гармонического баланса определить амплитуду а и частоту автоколебаний.

Введем понятие эквивалентной передаточной функции нелинейного элемента:

(11)

Если
(а это имеет место при однозначных симметричных нелинейных характеристиках), то

(12)

Характеристическое уравнение замкнутой САУ (рис.1) имеет вид:

или частотная характеристика

(13)

(14)

Представим

Тогда уравнение (14) перепишется:

=
(17)

Равенство (14) или (17) является основой графо-аналитического метода определения параметров автоколебаний а и .

На комплексной плоскости строится АФЧХ линейной части

и характеристика нелинейного элемента

Если кривые пересекаются, то в САУ существуют автоколебания.

Частота автоколебаний в точке пересечения кривых по
, а амплитуда- по
.

Рассмотрим подробнее выделенный участок

Мы знаем амплитуду и частоту точек, ближайших к точке пересечения кривых. Амплитуду и частоту в точке пересечения можно определить, например, методом деления отрезка пополам.

Метод гармонической линеаризации

Это очень эффективный приближенный метод определения периодических колебаний в НЛ САУ.

Для применения метода гармонической линеаризации нелинейности необходимо выполнение требования – линейная часть должна обладать свойствами фильтра, т.е. она не должна пропускать высокие частоты.

На практике это требование обычно выполняется.

Пусть имеется нелинейный элемент

(1)

Пусть
(2)

Тогда
(3)

Разложим (1) в ряд Фурье:

Напомним, нелинейная функция F (x ) , разложенная в ряд Фурье, имеет вид:

,

,
,

Тогда ряд Фурье для нашей нелинейности будет иметь вид:


++высшие гармоники (4)

Положим постоянную составляющую

Из уравнения (2):

Из уравнения (3):

Тогда уравнение (4) можно переписать:

,


В уравнении (5) пренебрегаем высокими частотами и в этом приближенность метода.

Таким образом, нелинейный элемент при
заменяется линеаризованным выражением (5), которое при выполнении гипотезы фильтра линейной части принимает вид:

(6)

Эта процедура называется гармонической линеаризацией.

Коэффициенты
и
припостоянных а и . В динамическом же режиме, когда изменяютсяа и , коэффициенты
и
будут изменяться. В этом отличие гармонической линеаризации от обычной. (При обычной линеаризации коэффициент линеаризованного уравненияК зависит от точки линеаризации). Зависимость коэффициентов линеаризации от а и позволяет применить к НЛ САУ (6) методы исследования линейных систем и анализировать свойства НЛ САУ, которые не могут быть обнаружены при обычной линеаризации.

Коэффициенты гармонической линеаризации

некоторых типовых нелинейностей

    Релейная характеристика


2.Релейная характеристика с зоной нечувствительности

,
Амплитуда колебаний

3.Релейная характеристика с петлей гистерезиса

,
,

4.Релейная характеристика с зоной нечувствительности и петлей гистерезиса

,


Теперь рассмотрим замкнутую систему.

,

Можно ввести понятие передаточной функции нелинейного элемента

,

.

Тогда характеристическое уравнение замкнутой САУ:

,

или

Когда в замкнутой системе возникают собственные незатухающие колебания постоянной амплитуды и частоты, то коэффициенты гармонической линеаризации становятся постоянными и САУ становится линейной. А в линейной системе наличие периодических незатухающих колебаний говорит о наличии у нее чисто мнимых корней.

Таким образом для определения периодических решений надо в характеристическое уравнение подставить
. Здесь- текущая частота, а- частота автоколебаний.

В этом уравнении неизвестными являются и.

Выделим в этом уравнении действительную и мнимую части.

Введем для частоты и амплитуды искомого периодического решения обозначения
,
.

Получим два уравнения с двумя неизвестными.

Решив эти уравнения, найдем и- амплитуду и частоту периодических решений в НЛ САУ.

С помощью этих уравнений можно определить не только и, но и построить зависимостьи, например, от коэффициента усиления САУК .

Тогда, считая К переменным, запишем:

Задаваясь К , находим и, т.е
и

Можно выбрать К так, чтобы

1. было бы мало,

2. было бы неопасно для САУ,

3.автоколебаний не было бы.

С помощью этих же уравнений можно на плоскости двух параметров (например, Т и К ) построить линии равных значений амплитуды и частоты автоколебаний. Для этого уравнения переписывают:

Задаваясь числовыми значениями , получим
и

По этим графикам можно выбирать Т и К.

Определение устойчивости решений в нелинейных САУ

Автоколебаниям в НЛ САУ должны соответствовать устойчивые периодические решения. Поэтому после нахождения амплитуды и частотыпериодических решений необходимо исследовать их на устойчивость.

Рассмотрим приближенный метод исследования устойчивости периодических решений в НЛ САУ с помощью годографа Михайлова.

Пусть НЛ САУ

,
.
- получена с помощью метода гармонической линеаризации.

Характеристическое уравнение замкнутой системы

Запишем уравнение характеристической кривой (годографа Михайлова), для чего подставим в него
.

- текущее значение частоты вдоль годографа Михайлова,

- частота гармонической линеаризации (автоколебаний).

Тогда для любых заданных постоянных икривая Михайлова будет иметь такой же вид, как и для обыкновенных линейных систем.

При периодических решениях, соответствующих и, годограф Михайлова будет проходить через начало координат (т.к. система находится на границе устойчивости).

Для определения устойчивости периодических решений дадим приращение

Если при
кривая Михайлова займет положение 1, а при

- положение 2, то периодическое решение устойчиво.

Если при
кривая займет положение 2, а при
- положение 1, то периодическое решение неустойчиво.

Рассмотрим химико-технологический объект, на вход которого поступает случайный сигнал и (/), а на выходе наблюдается случайный процесс у (/). При использовании корреляционных методов для идентификации линейных объектов с постоянными параметрами обычно полагают (или специально так подбирают тестовый сигнал), что случайные функции и (t) и у (t ) являются стационарными и стациопарно связанными в широком смысле, т. е. их математические ожидания постоянны, а авто- и взаимнокорреляционные функции являются функциями не двух, а одного аргумента, равного их разности.

При идентификации нелинейных динамических систем условия нормальности плотностей вероятности функций и (t) и у (t) и их совместной плотности вероятности, как правило, не выполняются, т. е. характеристики объекта определяются в условиях, когда совместные плотности вероятности функций и (t) и у (/) не гауссовы.

Следовательно, условная плотность вероятности функции у (t) относительно и (t) будет также не гауссовой. Регрессия выходной случайной величины относительно входной случайной функции при заданных значениях аргументов в общем случае нелинейна, а корреляция функций и (0 и у (t) гетероскедастична.

Таким образом, для идентификации нелинейных объектов уже недостаточно корреляционных методов, оперирующих математическими ожиданиями и корреляционными функциями случайных процессов. Ошибка в решении задачи идентификации нелинейного объекта корреляционными методами, используемыми для линейных систем, тем больше, чем сильнее регрессия функций у (t) относительно и (t) отличается от линейной и чем больше неравномерность математического ожидания условных дисперсий.

Задача идентификации нелинейных объектов, функционирующих в условиях случайных возмущений, представляет весьма сложную математическую проблему, которая в настоящее время находится в стадии разработки и еще далека до своего завершения. Тем не менее уже сейчас можно назвать ряд методов, которые хотя и нельзя считать исчерпывающими, однако дающие достаточно хорошее приближенное решение задачи идентификации нелинейных объектов статистическими методами. К таким методам можно отнести: 1) методы, основанные на использовании дисперсионной и взаимодисперсионной функций случайных процессов; 2) метод линеаризации нелинейной регрессии на участках гомоскедастич- ности математического ожидания условной дисперсии функции у (t) относительно и (t) 3) винеровский подход к идентификации нелинейных систем; 4) метод идентификации нелинейных систем, основанный на применении аппарата условных марковских процессов.

Кратко рассмотрим каждый из перечисленных методов.

1. Если зависимость между значениями случайных функций и (0 и у (t) нелинейная, то коэффициент корреляции между значениями случайной функции уже не может служить достаточно хорошим критерием для измерения тесноты связи между ними. Поэтому для характеристики связи между и и у используются

дисперсионные отношения , которые определяются через дисперсионные функции (2, 3].

Взаимная дисперсионная функция 0 yU (*, т) для действительных случайных функций у (t) и и (t) и автодисперсионная (дисперсионная) функция G„ K (*, т) для случайного процесса и (т) определяются соотношениями

где M { } - символ математического ожидания; M .

На основе определенных выше величин п уи, т| ук и R можно построить специальный TV-критерий для проверки гипотезы о линейности зависимости между сигналами у и и:

где п - число опытов; к - число интервалов в корреляционной таблице. Проверим с помощью TV-критерия гипотезу о линейности связи между y t и и т для объекта, рассмотренного в §6.4. Функция

N (т), построенная по входной и выходной реализациям системы, изображена на рис. 8.2 . В данном случае задача идентификации сводится к поиску неизвестных параметров объекта, которыми служат коэффициенты оператора в гильбертовом пространстве. Сигнал на входе системы раскладывается в^ряд подфункциям Лагерра:

с коэффициентами


Рис. 8.3.


Рис. 8.4.

Здесь п -я функция Лагерра g n (t) строится в виде произведения полинома Лагерра l n (t) на экспоненту:

Заметим, что изображение по Лапласу полиномов Лагерра па основании (8.19) имеет вид

Отсюда видно, что необходимые коэффициенты Лагерра можно получить, пропуская сигнал и (t) через цепочку линейных динамических звеньев (см. рис. 8.3).

Оператор нелинейной системы представляется в виде разложения по полиномам Эрмнта:

которые ортогональны на действительной оси - оо t . Из полиномов Эрмита строятся функции Эрмита:

с помощью которых оператор перехода от коэффициентов Лагерра входного сигнала к выходному сигналу записывается в виде


Соотношение (8.20) справедливо для любого нелинейного объекта и может быть положено в основу его идентификации. Методика идентификации значительно упрощается, если на вход подавать специальный сигнал в виде гауссового белого шума. В этом случае функции Лагерра представляют собой некоррелированные гауссовы случайные процессы с равными дисперсиями. При этом определение коэффициентов... к сводится к нахождению взаимнокорреляционной функции выхода системы и полиномов Эрмита:

Определение коэффициентов b { j ... к завершает решение задачи идентификации. Общая схема вычислений показана на рис. 8.4.

При решении задач идентификации химико-технологических объектов рассмотренный метод имеет ограниченное применение по ряду причин. К последним можно отнести, например, трудности, возникающие при переходе от коэффициентов b tj к к технологическим параметрам объекта. Метод не пригоден для нестационарных систем. Трудности реализации этой процедуры в режиме нормальной эксплуатации объекта также снижают эффективность метода. Наконец, необходимость усечения всех операций, связанных с предельными переходами, замена рядов конечными суммами являются источниками дополнительных вычислительных погрешностей.

4. Другой возможный подход к построению оптимальных фильтров нелинейных систем основан па использовании аппарата условных марковских процессов. Рассмотрим существо данного подхода на конкретном примере.

П р и м е р . Пусть полезный сигпал представляет собой прямоугольный импульс

момент появления которого t на отрезке 0 х Т требуется определить. Высота импульса А 0 и его длительность ч предполагаются известными. Сигнал, поступающий на объект, и (t)=s (*)+м> (*) есть сумма полезной составляющей s (0 и белого шума w (*), который описывается интегралом вероятности . Фазовые траектории на участке – а< x < a представляют собой прямые с коэффициентом наклона -1/Т 1 при различных значениях начальных условий.

На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.

Пусть х > a, . При этом исходная система нелинейных уравнений имеет вид

(27)

где c i - семейство изоклин, которое представляет собой прямые параллельные оси х, т.е. , где определяется из выражения для

. (28)

Таким образом

. (29)

Задаваясь значениями , строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.

Так как . Например, если , то a = 90°.

Пусть х < – a, . Построение выполняем аналогично, так как знак изменился, то будут другие углы пересечений изоклин фазовой траекторией. Фазовый портрет системы приведен на рис. 15.


Рис. 14 Рис. 15

Снимем упрощение К = 0, т.е. рассмотрим влияние отрицательной обратной связи по скорости двигателя на характер фазовой траектории.

При этом уравнения имеют вид:

(30)

Пусть , при этом переключение будет происходить при условии (а не условии х = а), это уравнение линии (рис. 16)


При этом количество перерегулирований уменьшается; можно подобрать такой наклон, при котором нет переколебаний.

Рассмотрим фазовый портрет без ограничений. В системе без ограничений фазовый портрет можно представить на трехлистной поверхности с наклонными гранями (рис. 17.) При этом лист 2 соответствует зоне нечувствительности z=0, лист 1 соответствует отрицательным значениям z, а лист 3 положительным. Вследствие гистерезиса имеет место частичное наложение листов.

Рис. 16 Рис. 17

Исследуем систему. Исследуем влияние отрицательной обратной связи по скорости двигателя (т.е. влияние величины – К). Пусть значение К увеличивается, при этом наклон прямых уменьшается, и может получиться, что срез будет более пологим чем наклон характеристики в средней части. Это приводит к частым переключениям. Такой режим называется скользящим. Если зона очень узкая, то движение как бы соскальзывает к установившемуся режиму (рис. 18а).

Если изменить знак обратной связи с отрицательной связи на положительную связь, то при этом изменится наклон линий переключения, и количество колебаний будет увеличиваться, система будет "раскачиваться". Система работает, как генератор и может появиться либо замкнутый цикл – автоколебания, либо расходящийся переходный процесс (рис. 18б).


Достоинства метода: простота и наглядность для систем 2-го порядка; пригодность для любого типа нелинейных элементов.

Недостатки: метод громоздкий для систем выше 2-го порядка, поэтому при n >2 не применяется.

Рассмотрим несколько примеров построения фазовых портретов нелинейных систем управления

Пример 1. Пусть задана система, состоящая из линейной части и нелинейного элемента (усилитель с ограничением по модулю) (рис. 19). Это кусочно-линейная система, так как на отдельных участках она ведет себя как линейная (в области) – а, +а[). Допустим в области (] – а, +а[) коэффициент усиления большой и система неустойчива а фазовый портрет характеризуется особой точкой "неустойчивый фокус". За пределами области коэффициент усиления мал, допустим, что при этом система устойчива и характеризуется особой точкой – "устойчивый фокус".

При больших отклонениях x > |a| общий коэффициент усиления системы мал, система устойчива, процесс затухает.

При малых отклонениях общий коэффициент усиления системы большой – процесс расходится к замкнутой траектории, которая характеризует наличие устойчивых автоколебаний (рис. 20).

В этой системе три типа движений: автоколебания; сходящиеся колебания; расходящиеся колебания



Пример 2. Пусть задана система с характеристикой нелинейного звена типа "зона нечувствительности" (рис. 21). Необходимо построить фазовый

портрет данной системы, определить наличие предельных циклов и проанализировать их устойчивость.

Построим фазовый портрет

1) При – a < x < +a f(x) = 0, а система уравнений имеет вид



Фазовый портрет в этой области представляет семейство прямых с коэффициентом к = -1, а состояние равновесия устойчиво по Ляпунову и представляет отрезок оси y = 0 на интервале – a

2) При x > +a f(x) = x – a, а система уравнений имеет вид

и угол пересечения фазовой траекторией изоклины по формуле a = arctg c, результаты приведены в таблицах 1 и 2.

Таблица 1

Таблица 2

3) При x < – a f(x) = x + a, а система уравнений имеет вид

Пример 4. Для заданной системы (рис. 26) построить примерный фазовый портрет.



Исходную схему можно представить в виде (рис. 27).

Построим фазовый портрет.

1) При –1 < x < +1 f(x) = x, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле

2) При x > +1 f(x) = 1, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле и угол пересечения фазовой траекторией изоклины по формуле a = arctg c.

3) При x < -1 f(x) = -1.

Левая часть фазового портрета строится аналогично правой.

Литература

1. Атабеков Г.И., Тимофеев А.Б., Купалян С.Д., Хухриков С.С. Теоретические основы электротехники (ТОЭ). Нелинейные электрические цепи. Электромагнитное поле. 5-е изд. Изд-во: ЛАНЬ, 2005. – 432 с.

2. Гаврилов Нелинейные цепи в программах схемотехнического моделирования. Изд-во: СОЛОН-ПРЕСС, 2002. – 368 с.

3. Дорф Р., Бишоп Р. Автоматика. Современные системы управления. 2002 г. – 832 с.

4. Теория автоматического управления. Учеб. для вузов по спец. "Автоматика и телемеханика". В 2-х ч./ Н.А. Бабаков, А.А. Воронов и др.: Под ред. А.А. Воронова. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1986. – 367 с., ил.

5. Харазов В.Г. Интегрированные системы управления технологическими процессами: Справочник. Издательство: ПРОФЕССИЯ, ИЗДАТЕЛЬСТВО, 2009. – 550 с.

Случайные статьи