Расчет плотности людского потока на путях эвакуации. Учебное пособие: Расчет времени эвакуации

ЛЮДСКОЙ ПОТОК

3.1. Особенности движения людей в составе потока

3.2. Плотность людского потока

3.3. Скорость движения людского потока

3.4. Интенсивность движения

3.5. Пропускная способность участка пути

3.1. Особенности движения людей в составе потока

Приняв решение об эвакуации, человек выходит на начальный участок эвакуационного пути. Это может быть проход между рабочими местами или оборудованием, проход между рядами зрительных мест, свободное пространство около места нахождения человека, соединяющие его с выходами из помещения. Одновременно с ним на этот участок могут выходить и другие люди. Они выбирают направление движения к тому или иному выходу и тем самым определяют маршрут своего движения, то есть последовательность участков эвакуационных путей, которые они должны пройти для того, чтобы попасть в безопасное место. Множество людей, одновременно идущих по общим путям в одном направлении, образует людские потоки.

Несмотря на очевидность такого определения, оно не определяет ни структуры, ни характеристик людского потока как процесса, явно имеющего социальную природу и показатели, далекие от привычных при описании физико-технических явлений (потоков жидкостей, электрического тока, сыпучих веществ и т. п.). Вероятно, именно эти различия и объясняют тот факт, что этот веками наблюдаемый процесс не получил технического описания, пригодного для использования при проектировании коммуникационных путей и для разработки мероприятий по обеспечению безопасности эвакуации людей в чрезвычайных ситуациях.

По-видимому, непростая для человеческого восприятия структура людского потока определила первоначальное его описание как массы людей, состоящей из рядов идущих в затылок друг другу людей – «элементарных потоков» . Такая модель быстрее соответствует воинскому подразделению на марше, чем неорганизованному перемещению людей, обгоняющих друг друга или идущих каждый в своем темпе и со своими целями.

Потребовались долговременные многочисленные натурные наблюдения людских потоков и теоретические исследования, основанные на их результатах, прежде чем сформировалось современное представление

о структуре и характеристиках людского потока, отражающее его суть в технических параметрах процесса. Имеющиеся методы фиксации параметров людского потока приведены на рис. 3.1.

Поток людей

Заметный человек

Рис. 3.1. Методы фиксации данных в натурных наблюдениях и экспериментах:

а – визуальный; б – кино-фотосъемка; в – учет перспективных искажений;

г – пример кинограммы движения людей

Натурные наблюдения показывают, что людской поток обычно имеет вытянутую сигарообразную форму (рис. 3.2).

Направление движения

Рис. 3.2. Схема людского потока:

1 – головная часть; 2 – основная; 3 – замыкающая

«Размещение людей в потоке (как по длине, так и по ширине) имеет всегда неравномерный и часто случайный характер. Расстояние между идущими людьми постоянно меняется, возникают местные уплотнения, которые затем рассасываются и возникают снова. Эти изменения неустойчивые во времени…» . Следовательно, на участке, занимаемом потоком, могут образовываться части с различными параметрами. При этом головная

и замыкающая части состоят из небольшого числа людей, двигающихся, соответственно, с большей или меньшей скоростью, чем основная масса людей в потоке. При эвакуации головная часть потока уходит с большей скоростью вперед, и по длине и числу людей возрастает, а замыкающая часть, наоборот, уменьшается.

Ширина потока b , как правило, обусловливается свободной для движения шириной участка, ограниченного ограждающими конструкциями, которые нарушают равномерность распределения людей в потоке, поскольку между ограждающими конструкциями и потоком людей при движении всегда образуются зазоры Δδ, соблюдаемые людьми из-за неизбежного раскачивания при ходьбе и опасения задеть конструкцию или какую-нибудь выступающую ее деталь. Поэтому движение людей в середине потока происходит при большей плотности, чем по его краям. Ширина пространства, которое людской поток использует для движения, называют шириной потока или эффективной шириной участка пути . Величины зазора, на которые уменьшается эффективная ширина участков различных видов пути в свету, приведены в табл. 3.1. Однако в дальнейшем, для упрощения изложения материала, ширину потока будем принимать равной ширине участка.

Таблица 3.1

Разница между эффективной шириной и шириной в свету участков различных видов пути

Величина зазора Δδ, см

Лестничный марш с оградой, перилами

Проход между кресел в зрительном

или спортивном зале

Коридор, пандус

Препятствие

Дверной проем, проем

Движение людей в потоке не прямолинейно и имеет сложную траекторию, что иллюстрирует кинограмма, приведенная на рис. 3.1 г .

Наблюдаемыми параметрами людского потока являются: количество людей в потоке N; плотность D ; скорость V ; величина потока Р .

3.2. Плотность людского потока

Плотность людского потока D , чел/м2 , – отношение количества людей в потоке N к площади занимаемого им участка, имеющего ширину b (для простоты вычислений ширину потока принимают равной ширине участка) и длину l :

Диапазон возможных плотностей проиллюстрирован на рис. 3.3.

Рис. 3.3. Иллюстрация значений плотностей людского потока

Плотность потока определяет свободу движения людей в нем, и, как следствие, соответствующий уровень комфортности людей. В зависимости от значений плотности предложено различать несколько уровней комфортности людей в потоке (табл. 3.2) .

Свободное пространство в потоке зависит не только от количества человек, но и от площади, занимаемой каждым из них, поэтому определенную роль играют габариты людей, рис. 3.4.

Для учета габаритов людей было предложено вводить в расчет плотности потока площадь, занимаемую человеком (его горизонтальную проекцию f , м2 , см. Прил. 3) :

М2 /м2 . (3.2)

Формой горизонтальной проекции человека принят эллипс, диаметры которого соответствуют ширине и толщине тела человека (рис. 3.5 а ). Площадь эллипса f = 0,25πac .

Таблица 3.2

Характеристики уровней комфортности

Плотность,

Расстояние между

Характеристика уровня

чел/м2

комфорта

людьми, м

Горизонтальная поверхность. Движение

Свобода движения и выбора направлений.

Небольшие конфликты

Свобода движения и выбора направлений

ограничена

Скорость движения ограничена. Наиболее

высокая плотность для общественных зданий

Скорость движения ограничена, наблюдается

частое изменение ритма движения. Движение

вперед с высокой скоростью возможно только

маневрированием. Существование такой

плотности допускается только на короткие

интервалы времени

Скорость движения крайне ограничена.

Движение вперед с высокой скоростью

возможно только маневрированием. Частые

неизбежные контакты с окружающими, потеря

контроля над ситуацией и нарушение

нормального функционирования

коммуникационного пути

Горизонтальная поверхность. Скопление, очередь, зона ожидания

Свободное движение в зоне ожидания

без контактов с окружающими

Ограниченное движение в зоне ожидания

с контактами с окружающими

Размещение без контактов с окружающими.

Движение в зоне ожидания ограничено

Размещение с контактами с окружающими

Физический

Тесный физический контакт с окружающими

Рис. 3.5. Площадь горизонтальной проекции человека:

а – расчетная; б – действительная

Следует отметить, что действительная форма горизонтальной проекции человека несколько отличается от эллипса (рис. 3.5 б ). Однако с учетом разнообразия физических данных и одежды принятое допущение несущественно искажает фактические размеры и форму горизонтальной проекции. Размеры людей изменяются в зависимости от физических данных, возраста и одежды. В таблицах и на рисунках Прил. 3 приводятся усредненные размеры людей разного возраста, в различной одежде и с различным грузом. Там же даны и значения площади горизонтальной проекции инвалидов с нарушением опорно-двигательного аппарата.

в фойе достигла критических значений 5,3 чел/м2 , а в некоторых местах

и до 7 чел/м 2 .

В рассмотренном случае никто не пострадал. Однако при возникновении чрезвычайной ситуации (или даже просто слухов о ней), он мог бы иметь трагические последствия. Безусловно, такие массовые мероприятия необходимо планировать заблаговременно.

Таблица 3.3

Инциденты с гибелью людей от компрессионной асфиксии

Количество

Место, мероприятие

погибших/

пострадавших

Россия, Москва, Трубная площадь,

Около 2000/–

похороны И. В. Сталина

Аргентина, Буэнос-Айрес, стадион

Россия, Москва, стадион

Мекка, хадж

Мекка, хадж

Гватемала, стадион

Мекка, хадж

Беларусь, Минск, вход в станцию метро

Бразилия, стадион

Западная Африка, Хана, стадион

Мекка, хадж

Индия, Вай, религиозное мероприятие

Багдад, религиозное мероприятие

Мекка, хадж

Филиппины, Манила, стадион

Индия, Раджастан, индуистский храм

Россия, Первоуральск, дискотека

Кот-д-Ивуар, футбольный матч

Нью-Дели, школа

Китай, провинция Хунань, школа

Рис. 3.6. Неудовлетворительная организация открытия магазина – давка в вестибюле торгового комплекса

Следует заметить, что нормативные документы некоторых стран, на-

пример США, в частности, п. 20.1.4.6 NFPA 1 Uniform Fire Code, требуют присутствия на массовых мероприятиях одного крауд-менеджера8 на каждые 250 человек. Более того, существуют специальные курсы для их подготовки. Тем не менее, для таких случаев должна быть проведена работа по следующим направлениям:

–  определение общего максимально допустимого числа людей на объекте;

–  определение площади, необходимой для размещения ожидаемого количества людей;

–  определение и исключение мест образования высоких травмоопасных плотностей (более 5 чел/м2 );

–  определениеоптимальныхинтерваловподходагрупплюдейсучетом пропускной способности участков пути;

–  оптимизация путей движения людей, исключающая пересечение, слияние и движение встречных людских потоков;

–  определение времени заполнения помещений (территории) и время выхода (эвакуация при возникновении ЧС);

–  предложение комплекса организационных мероприятий, исключающих образование паники.

Изменения плотности оказывают сильнейшее влияние и на характер движения людей в потоке, меняя его от свободного, при котором человек

8 От англ. crowd – толпа.

может выбирать скорость и направление своего движения, до стесненного в результате дальнейшего увеличения плотности потока, при котором он испытывает все возрастающие силовые воздействия окружающих его людей (табл. 3.4).

Таблица 3.4

Вид движения людей в интервалах плотности потоков

Значение

плотности,

м2 /м2

Индивидуальное

Поточное

С контакт-

С силовыми воздействиями

движения

Свободное

ными поме-

Очевидно, что ограничение возможностей движения человека в потоке при увеличении его плотности ведет к снижению скорости, которая определяет и расчетное время движения по рассматриваемому участку пути. Изменение скорости движения людей в потоке в зависимости от его плотности, изображенное графически, обнаруживается впервые в работе С. В. Беляева .

Состав людей в потоке, как правило, неоднородный, как по их индивидуальному физическому, так и психическому состоянию (рис. 3.7).

Рис. 3.7. Психофизиологические характеристики людского потока

ЛЮДСКОЙ ПОТОК

3.1. Особенности движения людей в составе потока

3.2. Плотность людского потока

3.3. Скорость движения людского потока

3.4. Интенсивность движения

3.5. Пропускная способность участка пути

3.1. Особенности движения людей в составе потока

Приняв решение об эвакуации, человек выходит на начальный участок эвакуационного пути. Это может быть проход между рабочими местами или оборудованием, проход между рядами зрительных мест, свободное пространство около места нахождения человека, соединяющие его с выходами из помещения. Одновременно с ним на этот участок могут выходить и другие люди. Они выбирают направление движения к тому или иному выходу и тем самым определяют маршрут своего движения, то есть последовательность участков эвакуационных путей, которые они должны пройти для того, чтобы попасть в безопасное место. Множество людей, одновременно идущих по общим путям в одном направлении, образует людские потоки.

Несмотря на очевидность такого определения, оно не определяет ни структуры, ни характеристик людского потока как процесса, явно имеющего социальную природу и показатели, далекие от привычных при описании физико-технических явлений (потоков жидкостей, электрического тока, сыпучих веществ и т. п.). Вероятно, именно эти различия и объясняют тот факт, что этот веками наблюдаемый процесс не получил технического описания, пригодного для использования при проектировании коммуникационных путей и для разработки мероприятий по обеспечению безопасности эвакуации людей в чрезвычайных ситуациях.

По-видимому, непростая для человеческого восприятия структура людского потока определила первоначальное его описание как массы людей, состоящей из рядов идущих в затылок друг другу людей – «элементарных потоков» . Такая модель быстрее соответствует воинскому подразделению на марше, чем неорганизованному перемещению людей, обгоняющих друг друга или идущих каждый в своем темпе и со своими целями.

Потребовались долговременные многочисленные натурные наблюдения людских потоков и теоретические исследования, основанные на их результатах, прежде чем сформировалось современное представление

о структуре и характеристиках людского потока, отражающее его суть в технических параметрах процесса. Имеющиеся методы фиксации параметров людского потока приведены на рис. 3.1.

Поток людей

Заметный человек

Рис. 3.1. Методы фиксации данных в натурных наблюдениях и экспериментах:

а – визуальный; б – кино-фотосъемка; в – учет перспективных искажений;

г – пример кинограммы движения людей

Натурные наблюдения показывают, что людской поток обычно имеет вытянутую сигарообразную форму (рис. 3.2).

Направление движения

Рис. 3.2. Схема людского потока:

1 – головная часть; 2 – основная; 3 – замыкающая

«Размещение людей в потоке (как по длине, так и по ширине) имеет всегда неравномерный и часто случайный характер. Расстояние между идущими людьми постоянно меняется, возникают местные уплотнения, которые затем рассасываются и возникают снова. Эти изменения неустойчивые во времени…» . Следовательно, на участке, занимаемом потоком, могут образовываться части с различными параметрами. При этом головная

и замыкающая части состоят из небольшого числа людей, двигающихся, соответственно, с большей или меньшей скоростью, чем основная масса людей в потоке. При эвакуации головная часть потока уходит с большей скоростью вперед, и по длине и числу людей возрастает, а замыкающая часть, наоборот, уменьшается.

Ширина потока b , как правило, обусловливается свободной для движения шириной участка, ограниченного ограждающими конструкциями, которые нарушают равномерность распределения людей в потоке, поскольку между ограждающими конструкциями и потоком людей при движении всегда образуются зазоры Δδ, соблюдаемые людьми из-за неизбежного раскачивания при ходьбе и опасения задеть конструкцию или какую-нибудь выступающую ее деталь. Поэтому движение людей в середине потока происходит при большей плотности, чем по его краям. Ширина пространства, которое людской поток использует для движения, называют шириной потока или эффективной шириной участка пути . Величины зазора, на которые уменьшается эффективная ширина участков различных видов пути в свету, приведены в табл. 3.1. Однако в дальнейшем, для упрощения изложения материала, ширину потока будем принимать равной ширине участка.

Таблица 3.1

Разница между эффективной шириной и шириной в свету участков различных видов пути

Величина зазора Δδ, см

Лестничный марш с оградой, перилами

Проход между кресел в зрительном

или спортивном зале

Коридор, пандус

Препятствие

Дверной проем, проем

Движение людей в потоке не прямолинейно и имеет сложную траекторию, что иллюстрирует кинограмма, приведенная на рис. 3.1 г .

Наблюдаемыми параметрами людского потока являются: количество людей в потоке N; плотность D ; скорость V ; величина потока Р .

3.2. Плотность людского потока

Плотность людского потока D , чел/м2 , – отношение количества людей в потоке N к площади занимаемого им участка, имеющего ширину b (для простоты вычислений ширину потока принимают равной ширине участка) и длину l :

Диапазон возможных плотностей проиллюстрирован на рис. 3.3.

Рис. 3.3. Иллюстрация значений плотностей людского потока

Плотность потока определяет свободу движения людей в нем, и, как следствие, соответствующий уровень комфортности людей. В зависимости от значений плотности предложено различать несколько уровней комфортности людей в потоке (табл. 3.2) .

Свободное пространство в потоке зависит не только от количества человек, но и от площади, занимаемой каждым из них, поэтому определенную роль играют габариты людей, рис. 3.4.

Для учета габаритов людей было предложено вводить в расчет плотности потока площадь, занимаемую человеком (его горизонтальную проекцию f , м2 , см. Прил. 3) :

М2 /м2 . (3.2)

Формой горизонтальной проекции человека принят эллипс, диаметры которого соответствуют ширине и толщине тела человека (рис. 3.5 а ). Площадь эллипса f = 0,25πac .

Таблица 3.2

Характеристики уровней комфортности

Плотность,

Расстояние между

Характеристика уровня

чел/м2

комфорта

людьми, м

Горизонтальная поверхность. Движение

Свобода движения и выбора направлений.

Небольшие конфликты

Свобода движения и выбора направлений

ограничена

Скорость движения ограничена. Наиболее

высокая плотность для общественных зданий

Скорость движения ограничена, наблюдается

частое изменение ритма движения. Движение

вперед с высокой скоростью возможно только

маневрированием. Существование такой

плотности допускается только на короткие

интервалы времени

Скорость движения крайне ограничена.

Движение вперед с высокой скоростью

возможно только маневрированием. Частые

неизбежные контакты с окружающими, потеря

контроля над ситуацией и нарушение

нормального функционирования

коммуникационного пути

Горизонтальная поверхность. Скопление, очередь, зона ожидания

Свободное движение в зоне ожидания

без контактов с окружающими

Ограниченное движение в зоне ожидания

с контактами с окружающими

Размещение без контактов с окружающими.

Движение в зоне ожидания ограничено

Размещение с контактами с окружающими

Физический

Тесный физический контакт с окружающими

Рис. 3.5. Площадь горизонтальной проекции человека:

а – расчетная; б – действительная

Следует отметить, что действительная форма горизонтальной проекции человека несколько отличается от эллипса (рис. 3.5 б ). Однако с учетом разнообразия физических данных и одежды принятое допущение несущественно искажает фактические размеры и форму горизонтальной проекции. Размеры людей изменяются в зависимости от физических данных, возраста и одежды. В таблицах и на рисунках Прил. 3 приводятся усредненные размеры людей разного возраста, в различной одежде и с различным грузом. Там же даны и значения площади горизонтальной проекции инвалидов с нарушением опорно-двигательного аппарата.

в фойе достигла критических значений 5,3 чел/м2 , а в некоторых местах

и до 7 чел/м 2 .

В рассмотренном случае никто не пострадал. Однако при возникновении чрезвычайной ситуации (или даже просто слухов о ней), он мог бы иметь трагические последствия. Безусловно, такие массовые мероприятия необходимо планировать заблаговременно.

Таблица 3.3

Инциденты с гибелью людей от компрессионной асфиксии

Количество

Место, мероприятие

погибших/

пострадавших

Россия, Москва, Трубная площадь,

Около 2000/–

похороны И. В. Сталина

Аргентина, Буэнос-Айрес, стадион

Россия, Москва, стадион

Мекка, хадж

Мекка, хадж

Гватемала, стадион

Мекка, хадж

Беларусь, Минск, вход в станцию метро

Бразилия, стадион

Западная Африка, Хана, стадион

Мекка, хадж

Индия, Вай, религиозное мероприятие

Багдад, религиозное мероприятие

Мекка, хадж

Филиппины, Манила, стадион

Индия, Раджастан, индуистский храм

Россия, Первоуральск, дискотека

Кот-д-Ивуар, футбольный матч

Нью-Дели, школа

Китай, провинция Хунань, школа

Рис. 3.6. Неудовлетворительная организация открытия магазина – давка в вестибюле торгового комплекса

Следует заметить, что нормативные документы некоторых стран, на-

пример США, в частности, п. 20.1.4.6 NFPA 1 Uniform Fire Code, требуют присутствия на массовых мероприятиях одного крауд-менеджера8 на каждые 250 человек. Более того, существуют специальные курсы для их подготовки. Тем не менее, для таких случаев должна быть проведена работа по следующим направлениям:

–  определение общего максимально допустимого числа людей на объекте;

–  определение площади, необходимой для размещения ожидаемого количества людей;

–  определение и исключение мест образования высоких травмоопасных плотностей (более 5 чел/м2 );

–  определениеоптимальныхинтерваловподходагрупплюдейсучетом пропускной способности участков пути;

–  оптимизация путей движения людей, исключающая пересечение, слияние и движение встречных людских потоков;

–  определение времени заполнения помещений (территории) и время выхода (эвакуация при возникновении ЧС);

–  предложение комплекса организационных мероприятий, исключающих образование паники.

Изменения плотности оказывают сильнейшее влияние и на характер движения людей в потоке, меняя его от свободного, при котором человек

8 От англ. crowd – толпа.

может выбирать скорость и направление своего движения, до стесненного в результате дальнейшего увеличения плотности потока, при котором он испытывает все возрастающие силовые воздействия окружающих его людей (табл. 3.4).

Таблица 3.4

Вид движения людей в интервалах плотности потоков

Значение

плотности,

м2 /м2

Индивидуальное

Поточное

С контакт-

С силовыми воздействиями

движения

Свободное

ными поме-

Очевидно, что ограничение возможностей движения человека в потоке при увеличении его плотности ведет к снижению скорости, которая определяет и расчетное время движения по рассматриваемому участку пути. Изменение скорости движения людей в потоке в зависимости от его плотности, изображенное графически, обнаруживается впервые в работе С. В. Беляева .

Состав людей в потоке, как правило, неоднородный, как по их индивидуальному физическому, так и психическому состоянию (рис. 3.7).

Рис. 3.7. Психофизиологические характеристики людского потока


К сожалению, подобных классических законов, описывающих пове­дение и движение людей в потоке эвакуирующихся при пожаре, не извест­но. Поэтому, чтобы «заглядывать в будущее» эвакуации необходимо было прежде суметь «увидеть» прошлое движение людей в подобных ситуаци­ях.

Решив эвакуироваться, человек в любом случае, выходит на началь­ный участок эвакуационного пути. Это может быть проход между рабочи­ми местами или оборудованием, проход между рядами зрительных мест, свободное пространство около места нахождения человека, соединяющие его с выходами из помещения.

Одновременно с ним на этот участок могут выходить и другие люди. Они выбирают направление движения к тому или иному выходу и тем самым определяют маршрут своего движения, т.е. по­следовательность участков эвакуационных путей, которые они должны пройти для того, чтобы попасть в безопасное место. Множество людей, одновременно идущих по общим путям в одном направлении, образует людские потоки.

Не смотря на очевидность такого определения, оно не определяет ни структуры, ни характеристик людского потока как процесса, явно имею­щего социальную природу и показатели, далёкие от привычных при опи­сании физико-технических явлений (потоков жидкостей, электрического тока, сыпучих веществ и т.п.).

Именно эти различия и объясняют, по-видимому, тот факт, что этот веками и повседневно наблюдаемый про­цесс не имел технического описания, пригодного для использования при проектировании коммуникационных путей и для разработки мероприятий по обеспечению безопасности эвакуации людей в чрезвычайных ситуаци­ях.

По-видимому, не простая для человеческого восприятия структура людского потока определила первоначальное его описание как массы лю­дей, состоящей из рядов, идущих в затылок друг другу люден - «элемен­тарных потоков» .

Такая модель, быстрее, соответствует воинскому подразделению на марше, чем неорганизованному перемещению людей, обгоняющих друг друга или идущих каждый в своём темпе и со своими целями.

Потребовались долговременные многочисленные натурные наблю­дения людских потоков и теоретические исследования, осно­ванные на их результатах, прежде чем сформировалось современное представление о структуре и характеристиках людского потока, отража­ющие его суть в технических параметрах процесса.

Натурные наблюдения показывают, что людской поток обычно имеет вытянутую сигарообразную форму.

Рис. 1 Схема людского потока: 1 головная часть; 2 основная: 3 замыкающая.

«Размещение людей в потоке (как по длине, так и по ширине) имеет всегда неравномерный и часто случайный характер. Расстояние между идущими людьми постоянно меняется, возникают местные уплотнения, которые затем рассасываются и возникают снова. Эти изменения неустой­чивые во времени...» .

Следовательно, на участке, занимаемым пото­ком, могут образовываться части с различными параметрами. При этом головная и замыкающая части состоят из небольшого числа людей, дви­гающихся, соответственно, с большей или меньшей скоростью, чем ос­новная масса людей в потоке. При эвакуации, головная часть потока уходит с большей скоростью вперед и по длине и числу людей возрас­тает, а замыкающая часть, наоборот, уменьшается.

Ширина потока b, как правило, обусловливается свободной для движения шириной участка, ограниченного ограждающими конструкци­ями, которые нарушают равномерность распределения людей в потоке, поскольку между ограждающими конструкциями и массой людей при движении всегда образуются зазоры Δδ, соблюдаемые людьми из-за неизбежного раскачивания при ходьбе и опасения задеть конструкцию или какую-нибудь выступающую ее деталь.

Поэтому движение людей в середине потока происходит при большей плотности, чем по краям. Ширина, которую людской поток использует для движения, называют шириной потока или эффективной шириной участка пути. Ве­личины зазора, на которую уменьшается эффективная ширина участков различных видов пути в свету, приведены на рис. 2.

Рис. 2. Разница между эффетивной шириной и шириной в свету участков различных видов пути

Движение людей в потоке не прямолинейно и имеет сложную траек­торию. Наблюда­емыми параметрами людского потока являются: количество людей в пото­ке N, его плотность D, скорость V и величина потока P. Плотность людского потока D i - отношение количества людей в по­токе (N i) к площади занимаемого им участка, имеющего ширину b i (для простоты вычислений ширину потока принимают равной ширине участка) и длину l i: D i = N i /b i l i чел/м 2 . Плотность потока определяет свободу движения людей в нем, и, как следствие, соответствующий уровень комфортности людей.

Кинематические закономерности движении людских потоков. Движение через границы смежных участков пути

В простейшем случае движения людских потоков имеем следующую ситуацию.

По участку n имеющему ширину δ n , к границе со следующим участком (n+1), имеющему ширину δ n+1 ,подошёл людской поток численностью N человек. По прошествии времени t весь поток перешёл на уча­сток n+1 и занял часть его длины Δl n +1 . Спрашивается: с какими же значениями параметров двигался поток по участку n+1? Для облегчения понимания процесса перехода была принята упро­щенная модель людского потока.

Упрощение состояло в том, что «по­скольку количество людей, составляющих головную и замыкающую части, относительно невелико по сравнению с основной массой, то вполне воз­можно показать поток в виде прямоугольника».

(Однако, в реально­сти, «В аварийных... условиях движения... головная, уходящая с боль­шей скоростью вперёд часть потока будет по длине н количеству людей возрастать, а остающаяся, замыкающая часть, наоборот, уменьшаться.

По­этому для аварийных условий необходимо обязательно учитывать так называемое растекание потока и, следовательно, постепенное изменение его плотности.»).

Размещение людей в потоке ни занятом нм участке Δl n принимается равномерным, а ширина потока b равной ширине участков, по которым он перемешается, т.е., соответственно, δ n и δ n +1 .

Впервые этот вопрос было предложено решить следующим образом: «Если известна плотность D 1 потока на данном участке пути шириною δ 1 , то его плотность D 2 на следующем по ходу движения участке шириной δ 2 определяется из выражения D 2 =D 1 δ 1 /δ 2 “

Однако, предположим, что людской поток численностью N человек и с плотностью D 1 двигается по горизонтальному участку постоянной шири­ны δ 1 , разделенному проёмом шириной δ 0 . Следовательно, плотность в проёме будет равна:

D 0 =D 1 δ 1 /δ 0 чел/м 2 .

Соответственно плотность на последующем после проёма участке пути:

D 1 =D 0 δ 0 /δ 1 чел/м 2 .

Из расчёта следует, что плотность на участках перед проёмом и после проёма при равной ширине участков оказывается одинаковой даже в том случае, когда пропускная способность проёма меньше пропускной способ­ности предшествующего проёму участка.

Очевидно, что пропускная спо­собность участка не может быть больше пропускной способности предше­ствующего ему проёма. Иначе говоря, участок не может пропустить боль­шее количество людей, чем на нею поступает за то же время с предыдуще­го участка.

Из расчёта также следует, что движение через проём протекает при постоянной плотности. Следовательно, при одном и том же количестве людей, но при разных ширинах предшествующего проёму участка, плот­ность в проёме не меняется.

Однако при большей ширине участка и, сле­довательно, при меньшей плотности скорость будет больше, то есть коли­чество подходящих к проёму людей в единицу времени будет больше. По-видимому, предпосылку расчёта, вытекающую из выражения сле­дует признать неточной.

Возможны два случая:

первый - поток переходит через границу участков без задержки;

второй - перед границей следующего участка происходит задержка людей

В первом случае, если задержки движения на границе участков не происходит, то время, которое потребуется потоку для окончания движе­ния по участку n (пройти оставшийся отрезок длиной Δl n =N/D n δ n) со­ставит:

t n =Δl n /V n =N/V n D n δ n

Ясно, что это время движения замыкающей плоскости потока по участку n.

За это же время поток пройдёт по участку n+1 отрезок пути длиной Δl n +1 при неизвестной плотности D n +1 и неизвестной скорости движения V n +1 . Длина этого отрезка составит: Δl n +1 =N/D n +1 δ n +1 а время:

t n+1 = Δl n +1 /V n +1 =N/V n +1 D n +1 δ n +1

Но, поскольку t n = t n +1 , то, следовательно, V n D n δ n = V n +1 D n +1 δ n +1 Обозначим величину D V через q, тогда можно записать:

q n +1 = q n δ n /δ n +1

Это соотношение впервые было установлено (иным способом) лишь в 1957 году. Позже величина q была названа интенсивностью движения людского потока, «так как значения q, не зависящие от ширины пути, ха­рактеризуют кинетику процесса движения людского потока.

Значения ин­тенсивности движения соответствуют значениям пропускной способности пуги шириной 1м».

(Следует отметить, что величина «интенсивность движения», обозначаемая также через q используется и в теории транс­портных потоков, хотя и имеет несколько иную интерпретацию).

Каждому значению интенсивности движения соответствует опреде­лённое значение плотности потока, поэтому по найденному q n +1 = q n δ n /δ n +1 значению интенсивности движения по участку n+1 всегда можно определить соот­ветствующее ему значение плотности D n +1 ,а по нему - и значение скоро­сти V n +1 .

Каков же характер кинетики людского потока, характеризуемый ин­тенсивностью ею движения?

Поскольку эта величина является произведением двух величин, при возрастании одной из которых (D) вторая (V) снижается, то при любом ви­де зависимости V=φ(D), это произведение должно иметь максимум, q m a x .

Положение и значение максимума зависит от вида функции V=φ(D) и от её конкретных значений. Для примера в таблице 1 приведены значения V и q. Графики зависимости q =φ(D) при соответствующих значениях V* и V** приведены на рис.3

Таблица 1. Изменение значений интенсивности людского потока q от вида зависимостей скорости его движения от плотности потока.

Плотность D, чел/м 2

Скорость V*, м/мин

Интен-сивность, чел/ммин

Скорость V**. м/мин

Интен-сивность чел/ммнн

Рис. 3 Графики функции q=φ(D)

Поскольку произведение интенсивности движения на ширину участка показывает количество людей, проходящих в единицу времени через попе­речное сечение участка пути, занятому потоком, то величина людского по­тока Р равна Р = qb, чел/мин.

Здесь b - именно ширина потока, которая в данном случае ограниче­на конструкциями пути эвакуации; это хорошо понятно в случае движения людского потока по участку неограниченной ширины, когда ширина потока н ширина участка пути (вестибюля) не совпадают.

Можно сказать, что геометрия путей движения деформирует поток, вынуждая его принимать различную ширину и длину; величина же потока, как показыва­ет соотношение q n +1 = q n δ n /δ n +1 , остаётся, при обеспечении беспрепятственности его движения, неизменной.

Иная ситуация складывается во втором случае движения людского потока через границы смежных участков пути, когда недостаточная шири­на последующего участка (n+1) заставляет поток двигаться с интенсивно­стью больше максимальной (значение q n +1 , определённое по формуле q n +1 = q n δ n /δ n +1 , больше значения q max для данного вида пути), что невозможно.

Поэтому часть людей не может перейти на последующий участок пути и скаплива­ется перед его границей, в чрезвычайных ситуациях - при максимальной плотности D max . Продолжающие подходить к скоплению люди, надавли­вают на находящихся в нём людей. В следующий момент времени они са­ми оказываются под давлением вновь подошедших людей. Плотность в скоплении может достичь физического предела.

Давление людей друг на друга продолжает расти и никто из них уже не можег ею регулировать, а оно достигает таких величин, которых не может выдержать человеческий организм длительное время. Спустя 3-4 минуты в нем уже возникают про­цессы компрессионной асфиксии, сопровождающиеся тканевым и костным травматизмом.

Как показали специальные натурные наблюдения в услови­ях, приближенных к аварийным ситуациям , высокие плотности в скоплениях перед проёмами с недостаточной пропускной способностью возникают очень быстро, через 5-7 сек., после начала их образования.

Очевидная опасность таких ситуаций определила большое внимание к их исследованиям в местах наиболее вероятного образования в дверных проёмах.

Эти исследования показали, что люди, подходя к более узкому участ­ку пути, в частности к проёму, заранее несколько корректируют направле­ние своего движения к центру.

В результате происходит взаимное сближе­ние человеческих тел и соответствующее уплотнение потока. При этом взаимное расположение тел приближается по виду к непрерывной вогну­той цепи.

Чем меньше ширина проёма, тем ближе люди в этой цепи вы­нуждены прижиматься друг к другу. В проёме люди образуют своего рода арку, пяты которой упираются в дверную коробку, причем выпуклость ар­ки направлена в сторону, противоположную направлению движения, рис. 4.

Явление возникновения арки тесно связано с возникновением эффекта «ложного проема». При проходе через дверной проем, люди стремятся из­бежать быть прижатыми к косяку проема. Для этого люди, идущие с боков, отталкиваются от косяка к центру проема.

Они на короткое время умень­шают действительную ширину проема, создавая тем самым «эффект лож­ного проема», рис.4. Одновременно люди, идущие ближе к оси проема, оказываются в зазоре между людьми, идущими с боков, и при определен­ных условиях как бы заклинивают проем, образуя арку.

Рис.4. Движение людского потока через проемы при их недостаточной пропуск­ной способности: а) схема образования арки, б) эффект ложного проема.

Существование арки носит пульсирующий характер, устойчивое ее положение явление редкое. Причем, арки редко возникают в проемах шириной 1,2м и практически не образуются в проемах шириной более 1.6м.

На рис.4 буквой Р обозначено усилие, сообщаемое звену арки тол­пой людей. Это усилие в арке раскладывается на систему сил, вызываю­щих и боковые давления (Т) на торцы элементов арки (плечи людей). Тор­цовые усилия могут быть вычислены по формуле T=P/2sin0,5φ. из кото­рой видно, что силы, которыми человек зажат с богов тем больше, чем значительнее давление на арку (Р) со стороны толпы и меньше угол φ. Си­ла Р слагается из усилий, оказываемых людьми, оказавшимися в каждом секторе толпы, спирающемся на человека в образовавшейся арке.

Такие усилия создаются людьми сознательно или бессознательно, когда они смещают центр тяжести своего тела в сторону арки и отставляет свою ногу в противоположном направлении для упора. Расчёты показыва­ют, что силы Р могут составлять более 100 кг, а Т - более 150 кг.

Мри таких силах сдавливания человеку трудно самостоятельно вырваться из арки и, сели арка не разрушается, то их воздействие может привести к увечьям и даже смерти. Печальные по­следствия их практического подтверждения давно известны.

Так. в ре­зультате образования скоплений перед выходами во время паники в театре Броклона (г. Нью-Йорк) в 1879 году погибло 283 человека. К сожалению, они продолжают происходить и в наше время.

Оставаясь в рамках модели с равномерным распределением людей по длине потока, следует считать, что образование скопления начинается сра­зу, как только передняя граница потока на участке n достигнет границы с участком n+1. Перед этой границей образуется скопление с плотностью D max , состоящее из людей, не успевших перейти её до подхода следующей части потока с плотностью D n .

Таким образом, образуется поток, состоя­щий из двух частей с разными плотностями. Поскольку скопление растёт, то граница между этими частями потока перемещается в направлении, противоположном направлению движения потока.

Интенсивность движения в скоплении q Dmax определяет и величину людского потока на последующем участке пути, т.е. то количество людей, которое может перейти на него из скопления перед его границей за едини­цу времени: Р = q Dmax δ n +1 . При этом возможны два варианта развития про­цесса движения людского потока но участку n+1.

Первый вариант: поток продолжает движение при плотности D max . Второй вариант: люди, перехо­дя на участок n+1, имеют перед собой пространство свободное для движе­ния, поэтому они увеличивают скорость до значения V n +1 , соответствую­щего значению интенсивности движения в скоплении q max , но при значе­нии плотности в интервале до D при q max .

Слияние людских потоков

Слияние людских потоков может происходить на участках пути, где соединяются несколько путей и идущие по ним потоки, слившись в общий поток, затем идут по общему пути.

Таким образом, процесс слияния всегда сопровождается процессом движения потоков через границы смежных участков пути.

Только, в отли­чие от рассмотренного выше, в данном случае участку общего пути дви­жения (n+1) будет предшествовать не один, а несколько, по крайней мере, два или три (n 1 , n 2 и n 3) участка. И здесь так же возможны два случая: беспрепятственное движение через границу смежных участков пути или образование скопления людей перед границей участка n+1.

Очевидно, что одновременный подход головных частей потоков к ме­сту слияния в практике встречается редко.

Как правило, люди из боковых проходов выходят либо в общий проход без слияния, либо вклиниваясь в поток идущих людей (рис.5.). Слияние людских потоков происходит при выполнении условия слияния потоков: передний фронт потока n, должен подойти к месту слияния до того, как последний человек из потока n пройдет место слияния потоков, т.е.:t n 1 ≤t n 2

Рис. 5. Слияние людских потоков.

Если слияние потоков происходит, то величина объединенного потока равна сумме величин сливающихся потоков, если ширина участка, на гра­нице коюрою они сливанлси, достаючна дли сю беспрепятственною движения, т.е. соблюдается условие q n +1 =S(q n δ n /δ n +1)

Если же пропускная способность последующего участка пути недо­статочна, то перед его границей с участками n 1 , и n 2 на этих участках об­разуются скопления людей с максимальной для данных условий плотно­стью, а поток, переходящий на участок n+1, будет иметь параметры дви­жения. соответствующие q при D max .

Переформирование и растекание людского потока.

При движении людских поток по участкам пути, весьма вероятны случаи, когда объединенный людской поток имеет несколько частей с раз­личной плотностью, рис.2.9. Например, при неодновременном слиянии двух потоков в объединённом потоке образуются три части: первая часть - с параметрами потока, первым прошедшем место слияния, вторая - с па­раметрами слившихся потоков, третья - с параметрами потока, последним миновавшем участок слияния.

Переформирование людского потока про­цесс выравнивания параметров движения в различных частях потока. В ре­зультате, вне зависимости от исходных параметров, каждая часть потока приобретает параметры впереди идущей части. Скорость переформнрования V - скорость движения границы увеличения впереди идущей части - определяется скоростью перемещения границы между частями потока с различной плотностью.

Рис. 6. Схема процесса переформирования людского потока.

К началу процесса переформирования люди в авангарде второй части потока, имеющей плотность D 2 , идут со скоростью V 2 и разметаются вплотную к первой части, имеющей плотность D 1 и скорость V 1 . По про­шествии времени t все люди из второй части потока разместятся на участ­ке Δl n 1 с плотностью D 1 в конце впереди идущей части, образуя единый поток с этой плотностью D 1 . Если D 1 ≥D 2 , то Δl n 2 ≤l n 2 и Δl n 2 =l n 2 D 2 /D 1 .

На рисунке 2.9. видно, что за время t люди, замыкающие первую часть потока, а вместе с ними и люди из примыкающего авангарда второй части проходят расстояние х+Δl n 2 =V 1 t. Люди же из замыкающей части второго потока проходят расстояние х + Δl n 2 =V 2 t. Исходя из приведённых соотношений можно записать: (х + l n 2 D 2 /D 1)/ V 1 = (х + l n 2)/V 2 и, преоб­разовав, получим

х(1-V 1 /V 2)= Δl n 2 (q 1 /q 2 -1).

Поскольку скорость переформирования потока, т.е. скорость приобре­тения второй частью потока плотности первой части, неизвестна, то обо­значим её V 1 . Тогда можно записать x = V 1 t. Но: x+ l n 2 D 2 /D 1 =V 1 t и, по­сле алгебраических преобразований, имеем:

V 1 = (q 1 –q 2)/(D 1 -D 2).

Подобным образом может быть выведена и формула для расчёта вре­мени переформирования потока:

t 1 = Δl n2 (D 1 -D 2)/D 2 (V 2 -V 1) = l n2 (D 1 -D 2)/ D 1 (V 2 – V 1).

Пока рассматривалась ситуация, в которой плотность людского пото­ка в его впереди расположенной части выше плотности сзади расположен­ной части потока, и, следовательно, V 1 ≤V 2 . Считается, что и в случае V 1 ≥V 2 также происходит переформирование людского потока: люди из второй части потока, идущие с меньшей скоростью, увеличивают скорость и продолжают движения со скоростью первой части.

Если головная часть потока имеет плотность свободного движения, то и весь поток, со време­нем. будет идти со скоростью свободного движения, т.е. с максимальной при данном уровне эмоционального состояния людей. Происходит расте­кание потока. Расчёт процесса растекания потока производится по форму­лам, принимая V 1 =V 0 и D 1 =D 0 , т.е. равные значениям при сво­бодном движении людей в потоке.

Однако, очевидно, что для этого все люди в потоке должны иметь одинаковые физические возможности или стимулировать свою подвиж­ность, переходя на более высокий уровень эмоционального состояния.

Та­кое наиболее вероятно в чрезвычайных ситуациях. Частичное растекание потока ежедневно наблюдается в часы пик на пешеходных коммуникациях станций и пересадочных узлах метрополитена. Но здесь же мы наблюдаем и образование г рупп более медленно идущих, не так торопящихся и пожи­лых, люден.

  • Пневматическое прыжковое спасательное устройство «Куб жизни». Технические характеристики ППСУ-20
  • Собаки спасатели. Породы. Кинологическая служба МЧС России.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшегопрофессионального образования «Оренбургский государственный университет»

Кафедра безопасности жизнедеятельности

РАСЧЕТ ВРЕМЕНИ ЭВАКУАЦИИ


Введение

1 Расчет допустимой продолжительности эвакуации при пожаре

2 Расчет времени эвакуации

3 Пример расчета

Список использованных источников

Приложение А. Таблица АЛ – Категории производства

Приложение Б. Таблица Б.1 – Степень огнестойкости для различныхзданий

Приложение В. Таблица В.1 – Средняя скорость выгорания и теплотасгорания веществ и материалов

Приложение Г. Таблица Г.1 – Линейная скорость распространенияпламени на поверхности материалов

Приложение Д. Таблица Д. 1 – Время задержки начала эвакуации

Приложение Е. Таблица ЕЛ – Площадь проекции человека. Таблица Е.2 -Зависимость скорости и интенсивности движения от плотности людскогопотока


Введение

Одним из основных способов защиты от поражающих факторов ЧС является своевременная эвакуация и рассредоточение персонала объектов и населения из опасных районов и зон бедствий.

Эвакуация – комплекс мероприятий по организованному выводу или вывозу персонала объектов из зон ЧС или вероятностей ЧС, а также жизнеобеспечение эвакуированных в районе размещения.

При проектировании зданий и сооружений одной из задач является создание наиболее благоприятных условий для движения человека при возможной ЧС и обеспечение его безопасности. Вынужденное движение связано с необходимостью покинуть помещение или здание из-за возникшей опасности (пожар, авария и т.п.). Профессором В.М.Предтеченским впервые рассмотрены основы теории движения людей как важного функционального процесса, свойственного зданиям различного назначения.

Практика показывает, что вынужденное движение имеет свои специфические особенности, которые необходимо учитывать для сохранения здоровья и жизни людей. Установлено, что в США ежегодно на пожарах погибает около 11000 человек. Наиболее крупные катастрофы с человеческими жертвами произошли за последнее время именно в США. Статистика показывает, что наибольшее число жертв приходится на пожары в зданиях с массовым пребыванием людей. Число жертв на некоторых пожарах в театрах, универмагах и других общественных зданиях достигло несколько сотен человек.

Основная особенность вынужденной эвакуации заключается в том, что при возникновении пожара, уже в самой его начальной стадии, человеку угрожает опасность в результате того, что пожар сопровождается выделением тепла, продуктов полного и неполного сгорания, токсических веществ, обрушением конструкций, что так или иначе угрожает здоровью или даже жизни человека. Поэтому при проектировании зданий принимаются меры, чтобы процесс эвакуации мог бы завершиться в необходимое время.

Следующая особенность заключается в том, что процесс движения людей в силу угрожающей им опасности инстинктивно начинается одновременно в одном направлении в сторону выходов, при известном проявлении физических усилий у части эвакуирующихся. Это приводит к тому, что проходы быстро заполняются людьми при определенной плотности людских потоков. С увеличением плотности потоков скорости движения снижаются, что создает вполне определенный ритм и объективность процесса движения. Если при нормальном движении процесс эвакуации носит произвольный характер (человек волен двигаться с любой скоростью и в любом направлении), то при вынужденной эвакуации это становится невозможным.

Показателем эффективности процесса вынужденной эвакуации является время, в течение которого люди могут при необходимости покинуть отдельные помещения и здание в целом.

Безопасность вынужденной эвакуации достигается в случае, если продолжительность эвакуации людей из отдельных помещений или зданий в целом будет меньше продолжительности пожара, по истечении которой возникают опасные для человека воздействия.

Кратковременность процесса эвакуации достигается конструктивно-планировочными и организационными решениями, которые нормируются соответствующими СНиПами.

Ввиду того, что при вынужденной эвакуации не каждая дверь, лестница или проем могут обеспечить кратковременную и безопасную эвакуацию (тупиковый коридор, дверь в соседнее помещение без выхода, оконный проем и др.), нормы проектирования оговаривают понятия «эвакуационный выход» и «эвакуационный путь».

Согласно нормам (СНиП П-А. 5–62, п. 4.1) эвакуационными выходами считаются дверные проемы, если они ведут из помещений непосредственно наружу; в лестничную клетку с выходом наружу непосредственно или через вестибюль; в проход или коридор с непосредственным выходом наружу или в лестничную клетку; в соседние помещения того же этажа, обладающие огнестойкостью не ниже III степени, не содержащие производств, относящихся по пожарной опасности к категориям А, Б и В, и имеющие непосредственный выход наружу или в лестничную клетку (см. приложение А) .

Все проемы, в том числе и дверные, не обладающие указанными выше признаками, не считаются эвакуационными и в расчет не принимаются.

К эвакуационным путям относят такие, которые ведут к эвакуационному выходу и обеспечивают безопасное движение в течение определенного времени. Наиболее распространенными путями эвакуации являются проходы, коридоры, фойе и лестницы. Пути сообщения, связанные с механическим приводом (лифты, эскалаторы), не относятся к путям эвакуации, так как всякий механический привод связан с источниками энергии, которые могут при пожаре или аварии выйти из строя.

Запасными выходами называют такие, которые не используются при нормальном движении, но могут быть использованы в случае необходимости при вынужденной эвакуации. Установлено, что люди обычно пользуются при вынужденной эвакуации входами, которые ими использовались при нормальном движении. Поэтому в помещениях с массовым пребыванием людей запасные выходы в расчет эвакуации не принимаются .

Основными параметрами, характеризующими процесс эвакуации из зданий и сооружений, являются:

Плотность людского потока (D);

Скорость движения людского потока (v);

Пропускная способность пути (Q);

Интенсивность движения (q) ;

Длина эвакуационных путей, как горизонтальных, так и наклонных;

Ширина эвакуационных путей.

Плотность людских потоков. Плотность людских потоков можно измерять в различных единицах. Так, например, для определения длины шага человека и скорости его движения удобно знать среднюю длину участка эвакуационного пути, приходящуюся на одного человека. Длина шага человека принимается равной длине участка пути, приходящейся на человека, за вычетом длины ступни (рисунок 1).

Рисунок 1 – Схема к определению длины шага и линейной плотности

В производственных зданиях или помещениях с небольшой заселенностью плотность может быть более 1 м/чел. Плотность, измеряемую длиной пути на одного человека, принято называть линейной и измерять в м/чел. Обозначим линейную плотность Д.

Более наглядной единицей измерения плотности людских потоков является плотность, отнесенная к единице площади эвакуационного пути и выражаемая в чел/м 2 . Эта плотность называется абсолютной и получается путем деления количества людей на площадь занятого ими эвакуационного пути и обозначается Др. Пользуясь этой единицей измерения, удобно определять пропускную способность эвакуационных путей и выходов. Эта плотность может колебаться от 1 до 10–12 чел./м 2 для взрослых людей и до 20–25 чел./м для школьников.

По предложению кандидата технических наук А.И. Милинского, плотность потоков измеряют как отношение части площади проходов, занятой людьми, к общей площади проходов. Эта величина характеризует степень заполнения эвакуационных путей эвакуирующимися. Часть площади проходов, занятую людьми, определяют как сумму площадей горизонтальных проекций каждого человека (приложение Е, таблица ЕЛ). Площадь горизонтальной проекции одного человека зависит от возраста, характера, одежды и колеблется в пределах от 0,04 до 0,126 м 2 . В каждом отдельном случае площадь проекции одного человека может быть определена, как площадь эллипса:

(1)

где а – ширина человека, м; с – его толщина, м.

Ширина взрослого человека в плечах колеблется от 0,38 до 0,5 м, а толщина – от 0,25 до 0,3 м. Имея в виду различный рост людей и некоторую сжимаемость потока за счет одежды, плотность может в отдельных случаях превышать 1 м /м. Эту плотность назовем относительной, или безразмерной, и обозначим D o .

В связи с тем, что в потоке встречаются люди различного возраста, пола и различной конфигурации, данные о плотности потоков представляют в известной степени усредненные значения.

Для расчетов вынужденной эвакуации вводится понятие расчетной плотности людских потоков. Под расчетной плотностью людских потоков подразумевается наибольшее значение плотности, возможное при движении на каком-либо участке эвакуационного пути. Максимально возможное значение плотности называется предельным. Под предельным подразумевают такое значение плотности, при превышении которого вызывается механическое повреждение человеческого тела или асфиксия.

При необходимости можно от одной размерности плотности перейти к другой. При этом можно пользоваться следующими соотношениями:


Где f– средний размер площади проекции одного человека, м /чел.;

а – ширина человека, м.

При массовых людских потоках длина шага ограничивается и зависит от плотности потоков. Если принять среднюю длину шага взрослого человека твной 70 см, а длину ступни – равной 25 см, то линейная плотность, при которой возможно движение с указанной длиной шага, будет:

0,7+ 0,25 = 0,95.

Практически считают, что шаг длиной 0,7 м сохранится и при линейной плотности, равной 0,8. Это объясняется тем, что при массовых потоках человек продвигает ногу между впереди идущими, что и способствует сохранению дайны шага.

Скорость движения. Обследования скоростей движения при предельных плотностях показали, что минимальные скорости на горизонтальных участках пути колеблются в пределах от 15 до 17 м/мин. Расчетная скорость движения, узаконенная нормами проектирования для помещений с массовым пребыванием людей, принимается равной 16 м/мин.

На участках эвакуационного пути или в зданиях, где заведомо плотности потоков при вынужденном движении будут меньше предельных значений, скорости движения будут соответственно больше. В этом случае при определении скорости вынужденного движения исходят из длины и частоты шага человека. Для практических расчетов можно скорость движения определять по формуле:

(4)

где п – число шагов в мин, равное 100.

Скорость движения при предельных плотностях по лестнице вниз получена 10 м/мин, а по лестнице вверх – 8 м/мин.

Пропускная способность выходов. Под удельной пропускной способностью выходов подразумевают количество людей, проходящих через выход шириной в 1 м за 1 мин.

Наименьшее значение удельной пропускной способности, полученное опытным путем, при данной плотности именуется расчетной удельной пропускной способностью. Удельная пропускная способность выходов зависит от ширины выходов, плотностей людских потоков и отношения ширины людских потоков к ширине выхода.

Нормами установлена пропускная способность дверей шириной до 1,5 м, равная 50 чел./м-мин, а шириной более 1,5 м 60 чел./м-мин (для предельных плотностей).

Размеры эвакуационных выходов. Кроме размеров эвакуационных путей и выходов, нормы регламентируют их конструктивно-планировочные решения, обеспечивающие организованное и безопасное движение людей.

Пожарная опасность производственных процессов в промышленных зданиях характеризуется физико-химическими свойствами веществ, образующихся в производстве. Производства категорий А и Б, в которых обращаются жидкости и газы, представляют особую опасность при пожарах в силу возможности быстрого распространения горения и задымления зданий, поэтому протяженность путей для них является наименьшей. В производствах категории В, где обращаются твердые горючие вещества, скорость распространения горения меньше, срок эвакуации может быть несколько увеличен, а следовательно, и протяженность путей эвакуации будет больше, чем для производства категорий А и В. В производствах категорий Г и Д, размещаемых в зданиях I и II степеней огнестойкости, протяженность путей эвакуации не ограничивается (для определения категории здания см. приложение А).

При нормировании исходили из того, что количество эвакуационных путей, выходов и их размеры должны одновременно удовлетворять четырем условиям:

1) наибольшее фактическое расстояние от возможного места пребываниячеловека по линии свободных проходов или от двери наиболее удаленногопомещения 1 ф до ближайшего эвакуационного выхода должно быть меньше илиравно требуемому по нормам 1 тр

2) суммарная ширина эвакуационных выходов и лестниц,предусмотренная проектом, д ф должна быть больше или равна требуемой понормам

3) количество эвакуационных выходов и лестниц по соображениямбезопасности должно быть, как правило, не меньше двух.

4) ширина эвакуационных выходов и лестниц не должна быть меньшеили больше значений, предусмотренных нормами .

Обычно в производственных зданиях протяженность путей эвакуации измеряют от наиболее удаленного рабочего места до ближайшего эвакуационного выхода. Чаще всего эти расстояния нормируют в пределах первого этапа эвакуации. При этом косвенно увеличивается общая продолжительность эвакуации людей из здания в целом. В многоэтажных зданиях протяженность путей эвакуации в помещениях будет меньше, чем в одноэтажных. Это совершенно правильное положение дано в нормах.

Степень огнестойкости здания также влияет на протяженность эвакуационных путей, так как она предопределяет скорость распространения горения по конструкциям. В зданиях I и II степеней огнестойкости протяженность путей эвакуации при прочих равных условиях будет больше, чем в зданиях III, IV и V степеней огнестойкости.

Степень огнестойкости зданий определяется минимальными пределами огнестойкости строительных конструкций и максимальными пределами распространения огня по этим конструкциям, при определении степени огнестойкости необходимо воспользоваться приложением Б.

Протяженность путей эвакуации для общественных и жилых зданий предусматривается, как расстояние от дверей наиболее удаленного помещения до выхода наружу или в лестничную клетку с выходом наружу непосредственно или через вестибюль. Обычно при назначении величины предельного удаления учитываются назначение здания и степеньогнестойкости. Согласно СНиП П-Л.2–62 «Общественные здания», протяженность путей эвакуации до выхода в лестничную клетку незначительна и удовлетворяет требованиям безопасности.

1. Расчет допустимой продолжительности эвакуации при пожаре

При возникновении пожара опасность для человека составляют высокие температуры, снижение концентрации кислорода в воздухе помещений и возможность потери видимости вследствие задымления зданий.

Время достижения критических для человека температур и концентраций кислорода на пожаре именуется критической продолжительностью пожара и обозначается .

Критическая продолжительность пожара зависит от многих переменных:

(1.1)

где – объем воздуха в рассматриваемом здании или помещении, м 3 ;

с – удельная изобарная теплоемкость газа, кДж/кг-град;

t Kp критическая для человека температура, равная 70°С;

t H начальная температура воздуха, °С;

коэффициент, характеризующий потери тепла на нагрев конструкций и окружающих предметов принимается в среднем равным 0,5;

Q теплота сгорания веществ, кДж/кг, (приложение В);

f – площадь поверхности горения, м 2 ;

п – весовая скорость горения, кг/м 2 -мин (приложение В);

v линейная скорость распространения огня по поверхности горючих веществ, м/мин (приложение Г).

Для определения критической продолжительности пожара по температуре в производственных зданиях с применением легковоспламеняющихся и горючих жидкостей можно воспользоваться формулой, полученной на основании уравнения теплового баланса:


Свободный объем помещения соответствует разности между геометрическим объемом и объемом оборудования или предметов, находящихся внутри. Если рассчитывать свободный объем невозможно, допускается принимать его равным 80% геометрического объема.

Удельная теплоемкость сухого воздуха при атмосферном давлении 760 мм. рт. ст., согласно табличным данным составляет 1005 кДж/кг-град при температуре от 0 до 60°С и 1009 кДж/кг-град при температуре от 60 до 120°С.

Применительно к производственным и гражданским зданиям с применением твердых горючих веществ критическая продолжительность пожара определяется по формуле:

(1.3)

По снижению концентрации кислорода в воздухе помещения критическую продолжительность пожара определяют по формуле:

(1.4)

где W02 – расход кислорода на сгорание 1 кг горючих веществ, м /кг, согласно теоретическому расчету составляет 4,76 огмин .

Линейная скорость распространения огня при пожарах, по данным ВНИИПО, составляет 0,33–6,0 м/мин, более точные данные для разных материалов представлены в приложении Г.


Критические продолжительности пожара по потере видимости и по каждому из газообразных токсичных продуктов горения больше, чем вышеперечисленные предыдущие, поэтому в расчет не принимаются.

Из полученных в результате расчетов значений критической продолжительности пожара выбирается минимальное:

(1.5)

Допустимую продолжительность эвакуации определяют по формулам:

где и соответственно допустимая продолжительность

эвакуации и критическая продолжительность пожара при эвакуации, мин,

m коэффициент безопасности, зависящий от степени противопожарной защиты здания, его назначения и свойств горючих веществ, образующихся в производстве или являющихся предметом обстановки помещений или их отделки.

Для зрелищных предприятий с колосниковой сценой, отделенной от зрительного зала противопожарной стеной и противопожарным занавесом, при огнезащитной обработке горючих веществ на сцене, наличии стационарных и автоматических средств тушения и средств оповещения о пожаре m = 1,25.

Для зрелищных предприятий при отсутствии колосниковой сцены (кинотеатры, цирки и т.п.) m = 1,25.

Для зрелищных предприятий с эстрадой для концертных представлений т =1,0.

Для зрелищных предприятий с колосниковой сценой и при отсутствии противопожарного занавеса и автоматических средств тушения и оповещения о пожаре т = 0,5.

В производственных зданиях при наличии средств автоматического тушения и оповещения о пожаре т = 2,0.

В производственных зданиях при отсутствии средств автоматического тушения и оповещения о пожаре т= 1,0.

При размещении производственных и других процессов в зданиях III степени огнестойкости т = 0,65–0,7.

Критическая продолжительность пожара для здания в целом устанавливается в зависимости от времени проникновения продуктов горения и возможной потери видимости в коммуникационных помещениях, размещаемых до выхода из здания.

Опыты, проведенные по сжиганию древесины, показали, что время, по истечении которого возможна потеря видимости, зависит от объема помещений, весовой скорости горения веществ, скорости распространения пламени по поверхности веществ и полноты горения. В большинстве случаев существенная потеря видимости при сжигании твердых горючих веществ наступала после того, как в помещении возникали критические для человека температуры. Наибольшее количество дымообразующих веществ наступает в фазе тления, которая характерна для волокнистых материалов.

При горении волокнистых веществ во взрыхленном состоянии в течение 1–2 мин имеет место интенсивное горение с поверхности, после чего начинается тление с бурным дымообразованием. При горении твердых изделий на основе древесины дымообразование и распространение продуктов горения в смежные помещения наблюдаются через 5–6 мин.

Наблюдения показали, что в начале эвакуации решающим фактором для определения критической продолжительности пожара является воздействие тепла на организм человека или снижение концентрации кислорода. При этом учитывается, что даже незначительное задымление, при котором еще сохраняется удовлетворительная видимость, может оказать отрицательное психологическое воздействие на эвакуирующихся.

Оценивая в итоге критическую продолжительность пожара для эвакуации людей из здания в целом, можно установить следующее.

При пожарах в гражданских и производственных зданиях, где основным горючим материалом являются целлюлозные материалы (в том числе древесина), критическая продолжительность пожара может быть принята равной 5–6 мин.

При пожарах в зданиях, где обращаются волокнистые материалы во взрыхленном состоянии, а также горючие и легковоспламеняющиеся жидкости – от 1,5 до 2 мин.

В зданиях, в которых не может быть обеспечена эвакуация людей в течение указанного времени, должны приниматься меры по созданию незадымляемых эвакуационных путей.

В вязи с проектированием зданий повышенной этажности стали широко применяться так называемые незадымляемые лестницы. В настоящее время существует несколько вариантов устройства незадымляемых лестниц. Наиболее популярным является вариант со входом в лестничную клетку через так называемую воздушную зону. В качестве воздушной зоны используются балконы, лоджии и галереи (рисунок 2, а, б).

Рисунок 2 – Незадымляемые лестницы: а – вход в лестничную клетку через балкон; б – вход в лестничную клетку через галерею.

2. Расчет времени эвакуации

Продолжительность эвакуации людей до выхода наружу из здания определяют по протяженности путей эвакуации и пропускной способности дверей и лестниц. Расчет ведется для условий, что на путях эвакуации плотности потоков равномерны и достигают максимальных значений.

Согласно ГОСТ 12.1.004–91 (приложение 2, п. 2.4), общее время эвакуации людей складывается из интервала «времени от возникновения

пожара до начала эвакуации людей», т н э , и расчетного времени эвакуации, t p , которое представляет собой сумму времени движения людского потока по отдельным участкам ( t ,) его маршрута от места нахождения людей в момент начала эвакуации до эвакуационных выходов из помещения, с этажа, из здания.

Необходимость учета времени начала эвакуации впервые в нашей стране установлена ГОСТ 12.1.004–91 . Исследования, проведенные в различных странах, показали, что при получении сигнала о пожаре, человек будет исследовать ситуацию, оповещать о пожаре, пытаться бороться с огнем, собирать вещи, оказывать помощь и т.п. Среднее значение время задержки начала эвакуации (при наличии системы оповещения) может быть невысоким, но может достигать и относительно высоких значений. Например, значение 8,6 мкн было зафиксировано при проведении учебной эвакуации в жилом здании, 25,6 мин в здании Всемирного Торгового Центра при пожаре в 1993 году .

Ввиду того, что продолжительность этого этапа, существенно влияет на общее время эвакуации, очень важно знать, какие факторы определяют его величину (следует иметь ввиду, что большинство этих факторов также будут влиять на протяжении всего процесса эвакуации). Опираясь на существующие работы в этой области, можно выделить следующие:

Состояние человека: устойчивые факторы (ограничение органов чувств, физические ограничения, временные факторы (сон/бодрствование), усталость, стресс, а также состояние опьянения);

Система оповещения;

Действия персонала;

Социальные и родственные связи человека;

Противопожарный тренинг и обучение;

Тип здания.

Время задержки начала эвакуации берется согласно приложению Д.

Расчетное время эвакуации людей ( t P ) следует определять как сумму времени движения людского потока по отдельным участкам пути t f :

......................................................... (2.1)

где – время задержки начала эвакуации;

t 1 – время движения людского потока на первом участке, мин;

t 2 , t 3 ,.......... t i – время движения людского потока на каждом из следующих после первого участкам пути, мин.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной /, и шириной bj . Начальными участками являются проходы между рабочими местами, оборудованием, рядами кресел и т.п.

При определении расчетного времени длина и ширина каждого участка пути эвакуации принимаются по проекту. Длина пути по лестничным маршам, а также по пандусам измеряется по длине марша. Длина пути в дверном проеме принимается равной нулю. Проем, расположенный в стене толщиной более 0,7 м, а также тамбур следует считать самостоятельным участком горизонтального пути, имеющим конечную длину.

Время движения людского потока по первому участку пути ( t ;), мин, вычисляют по формуле:

где длина первого участка пути, м;

– значение скорости движения людского потока по горизонтальному пути на первом участке, определяется в зависимости от относительной плотности D, м 2 /м 2 .

Плотность людского потока ( D \) на первом участке пути, м /м, вычисляют по формуле:

где число людей на первом участке, чел.;

f – средняя площадь горизонтальной проекции человека, принимаемая по таблице Е. 1 приложения Е, м 2 /чел.;

и длина и ширина первого участка пути, м.

Скорость V/ движения людского потока на участках пути, следующих после первого, принимается по таблице Е.2 приложения Е в зависимости от значения интенсивности движения людского потока по каждому из этих участков пути, которое вычисляют для всех участков пути, в том числе и для дверных проемов, по формуле:

где , – ширина рассматриваемого i‑гo и предшествующего ему участка пути, м;

, – значения интенсивности движения людского потока по рассматриваемому i‑му и предшествующему участкам пути, м/мин.

Если значение , определяемое по формуле (2.4), меньше или равно значению q max , то время движения по участку пути () в минуту: при этом значения q max , м/мин, следует принимать по таблице 2.1.

Таблица 2.1 – Интенсивность движения людей

Если значение q h определенное по формуле (2.4), больше q max , то ширину bj данного участка пути следует увеличивать на такое значение, при котором соблюдается условие:


При невозможности выполнения условия (2.6) интенсивность и скорость движения людского потока по участку пути i определяют по таблице Е.2 приложения Е при значении D = 0,9 и более. При этом должно учитываться время задержки движения людей из-за образовавшегося скопления.

При слиянии вначале участка i двух и более людских потоков (рисунок 3) интенсивность движения ( }, м/мин, вычисляют по формуле:

(2.7)

- интенсивность движения людских потоков, сливающихся в начале участка /, м/мин;

i ширина участков пути слияния, м;

ширина рассматриваемого участка пути, м.

Если значение определенное по формуле (2.7), больше q max , то ширину - данного участка пути следует увеличивать на такую величину, чтобы соблюдалось условие (2.6). В этом случае время движения по участку i определяется по формуле (2.5).

Интенсивность движения в дверном проеме шириной менее 1,6 м определяется по формуле:

Где b ‑ ширина проема.

Время движения через проем определяется как частное деления количества людей в потоке на пропускную способность проема:

Рисунок 3 – Слияние людских потоков

3. Порядок проведения расчета

· Выбрать из рассчитанных критических продолжительностей пожара минимальную и по ней рассчитать допустимую продолжительность эвакуации по формуле (1.6).

· Определить расчетное время эвакуации людей при пожаре, воспользовавшись формулой (2.1).

· Сравнить расчетное и допустимое время эвакуации, сделать выводы.

4. Пример расчета

Необходимо определить время эвакуации из кабинета сотрудников предприятия «Обус» при возникновении пожара в здании. Административное здание панельного типа, не оборудовано автоматической системой сигнализации и оповещения о пожаре. Здание двухэтажное, имеет размеры в плане 12x32 м, в его коридорах шириной 3 м имеются схемы эвакуации людей при пожаре. Кабинет объемом 126 м 3 расположен на втором этаже в непосредственной близости от лестничной клетки, ведущей на первый этаж. Лестничные клетки имеют ширину 1,5 м и длину 10 м. В кабинете работает 7 человек. Всего на этаже работают 98 человек. На первом этаже работает 76 человек. Схема эвакуации из здания представлена на рисунке 4

Рисунок 4 – Схема эвакуации сотрудников предприятия «Обус»: 1,2,3,4 – этапы эвакуации

4.1 Расчет времени эвакуации

4.1.2. Критическая продолжительность пожара по температуре рассчитывается по формуле (1.3) с учетом мебели в помещении:


4.1.3 Критическая продолжительность пожара по концентрации кислорода рассчитывается по формуле (1.4):

4.1.4 Минимальная продолжительность пожара по температуре
составляет 5,05 мин. Допустимая продолжительность эвакуации для данного
помещения:

4.1.5 Время задержки начала эвакуации принимается 4,1 мин по таблице Д. 1 приложения Д с учетом того, что здание не имеет автоматической системы сигнализации и оповещения о пожаре.

4.1.6 Для определения времени движения людей по первому участку, с учетом габаритных размеров кабинета 6x7 м, определяется плотность движения людского потока на первом участке по формуле (2.3):

.

По таблице Е.2 приложения Е скорость движения составляет 100 м/мин, интенсивность движения 1 м/мин, т.о. время движения по первому участку:


4.1.7 Длина дверного проема принимается равной нулю. Наибольшая возможная интенсивность движения в проеме в нормальных условиях g mffic =19,6 м/мин, интенсивность движения в проеме шириной 1,1 м рассчитывается по формуле (2.8):

q d = 2,5 + 3,75 b = 2,5 + 3,75 1,1 = 6,62 м/мин,

q d поэтому движение через проем проходит беспрепятственно.

Время движения в проеме определяется по формуле (2.9):

4.1.8. Так как на втором этаже работает 98 человек, плотность людского потока второго этажа составит:

По таблице Е2 приложения Е скорость движения составляет 80 м/мин, интенсивность движения 8 м/мин, т.о. время движения по второму участку (из коридора на лестницу):

4.1.9 Для определения скорости движения по лестнице рассчитывается интенсивность движения на третьем участке по формул (2.4):

,


Это показывает, что на лестнице скорость людского потока снижается до 40 м/мин. Время движения по лестнице вниз (3-й участок):

4.1.10 При переходе на первый этаж происходит смешивание с потоком людей, двигающихся по первому этажу. Плотность людского потока для первого этажа:

при этом интенсивность движения составит около 8 м/мин.

4.1.11. При переходе на 4-й участок происходит слияние людских потоков, поэтому интенсивность движения определяется по формуле (2.7):

По таблице Е.2 приложения Е скорость движения равняется 40 м/мин, поэтому скорость движения по коридору первого этажа:

4.1.12 Тамбур при выходе на улицу имеет длину 5 метров, на этом участке образуется максимальная плотность людского потока поэтому согласно данным приложения скорость падает до 15 м/мин, а время движения по тамбуру составит:


4.1.13 При максимальной плотности людского потока интенсивность движения через дверной проем на улицу шириной более 1,6 м – 8,5 м/мин, время движения через него:

4.1.13 Расчетное время эвакуации рассчитывается по формуле (2.1):

4.1.14 Таким образом, расчетное время эвакуации из кабинетов предприятия «Обус» больше допустимого. Поэтому здание, в котором располагается предприятие, необходимо оборудовать системой оповещения о пожаре, средствами автоматической сигнализации.

Список использованных источников

1 Охрана труда в строительстве: Учеб. для вузов/ Н.Д. Золотницкий [и др.]. – М.: Высшая школа, 1969. – 472 с.

2 Безопасность труда в строительстве (Инженерные расчеты по дисциплине «Безопасность жизнедеятельности»): Учебное пособие/ Д.В. Коптев [и др.]. – М.: Изд-во АСВ, 2003. – 352 с.

3 Фетисов, П.А.Справочник по пожарной безопасности. – М.: Энергоиздат, 1984. – 262 с.

4 Таблица физических величин: Справочник./ И.К. Кикоин [и др.]

5 Шрайбер, Г. Огнетушащие средства. Физико-химические процессы при горении и тушении. Пер. с нем. – М.: Стройиздат, 1975. – 240 с.

6 ГОСТ 12.1.004–91.ССБТ. Пожарная безопасность. Общие требования. - Введ. с 01.07.1992. – М.: Изд-во стандартов, 1992. -78 с.

7 Дмитриченко А.С. Новый подход к расчету вынужденной эвакуации людей при пожарах / А.С. Дмитриченко, С.А. Соболевский, С.А. Татарников // Пожаровзрывобезопасность, №6. – 2002. – С. 25–32.


Приложение А

Категория помещения Характеристика веществ и материалов, находящихся (обращающихся) в помещении
1 2
А Взрывопожароопасная Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа

Взрывопожароопасная

Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С в таком количестве, что могут образовывать взрывоопасные пылевоздушные или парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.
В1‑В4 Пожароопасная Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А и Б.
Г Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива.
Д Негорючие вещества и материалы в холодном состоянии.

Приложение Б

Таблица Б.1 – Степень огнестойкости для различных зданий

Степень огнестойкости Конструктивные характеристики
I Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона с применением листовых и плитных негорючих материалов
II То же. В покрытиях зданий допускается применять незащищенные стальные конструкции
III Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона. Для перекрытий допускается использование деревянных конструкций, защищенных штукатуркой или трудногорючими листовыми, а также плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке
Ша

Здания преимущественно с каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих листовых материалов с трудногорючим

утеплителем

Шб Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из цельной или клееной древесины, подвергнутой огнезащитной обработке, обеспечивающей требуемый предел распространения огня. Ограждающие конструкции – из панелей или поэлементной сборки, выполненные с применением древесины или материалов на ее основе. Древесина и другие горючие материалы ограждающих конструкций должны быть подвергнуты огнезащитной обработке или защищены от воздействия огня и высоких температур таким образом, чтобы обеспечить требуемый предел распространения огня.
IV Здания с несущими и ограждающими конструкциями из цельной или клееной древесины и других горючих или трудногорючих материалов, защищенных от воздействия огня и высоких температур штукатуркой или другими листовыми или плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке
IVa Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих материалов с горючим утеплителем.
V Здания, к несущим и ограждающим конструкциям которых не предъявляются требования по пределам огнестойкости и пределам распространения огня

Приложение В

Таблица В.1 – Средняя скорость выгорания и теплота сгорания веществ и материалов

Вещества и материалы Весовая скорость Теплота сгорания
горения хЮ 3 , кДж-кг» 1
кг‑м – мин»
Бензин 61,7 41870
Ацетон 44,0 28890
Диэтиловый спирт 60,0 33500
Бензол 73,3 38520
Дизельное топливо 42,0 48870
Керосин 48,3 43540
Мазут 34,7 39770
Нефть 28,3 41870
Этиловый спирт 33,0 27200
Турбинное масло (ТП‑22) 30,0 41870
Изопропиловый спирт 31,3 30145
Изопентан 10,3 45220
Толуол 48,3 41030
Натрий металлический 17,5 10900
Древесина (бруски) 13,7% 39,3 13800
Древесина (мебель в жилых и 14,0 13800
административных зданиях 8–10%)
Бумага разрыхленная 8,0 13400
Бумага (книги, журналы) 4,2 13400
Книги на деревянных стеллажах 16,7 13400
Кинопленка триацетатная 9,0 18800
Карболитовые изделия 9,5 26900
Каучук СКС 13,0 43890
Каучук натуральный 19,0 44725
Органическое стекло 16,1 27670
Полистирол 14,4 39000
Резина 11,2 33520
Текстолит 6,7 20900
Пенополиуретан 2,8 24300
Волокно штапельное 6,7 13800
Волокно штапельное в кипах 22,5 13800
40x40x40 см
Полиэтилен 10,3 47140
Полипропилен 14,5 45670
Хлопок в тюках 190 кг х м» 2,4 16750
Хлопок разрыхленный 21,3 15700
Лен разрыхленный 21,3 15700
Хлопок+капрон (3:1) 12,5 16200

Приложение Г

Таблица Г.1 – Линейная скорость распространения пламени на поверхности материалов

Линейная скорость
Материал распространения пламени
по поверхности,
м-мин» 1
Угары текстильного производства в 10
разрыхленном состоянии
Древесина в штабелях при влажности, %:
8–12 6,7
16–18 3,8
18–20 2,7
20–30 2,0
более 30 1,7
Древесина (мебель в административных и 0,36
других зданиях)
Подвешенные ворсистые ткани 6,7–10
Текстильные изделия в закрытом складе при 0,6
загрузке. 100 кг/м 2
Бумага в рулонах в закрытом складе при 0,5
загрузке 140 кг/м
Синтетический каучук в закрытом складе при 0,7
загрузке свыше 230 кг/м
Деревянные покрытия цехов большой площади, 2,8–5,3
деревянные стены, отделанные древесно-
волокнистыми плитами
Печные ограждающие конструкции с 7,5–10
утеплителем из заливочного ППУ
Соломенные и камышитовые изделия 6,7
Ткани (холст, байка, бязь):
по горизонтали 1,3
в вертикальном направлении 30
Листовой ППУ 5,0
Резинотехнические изделия в штабелях 1,7–2
Синтетическое покрытие «Скортон» 0,07
приТ=180 °С
Торфоплиты в штабелях 1,7
Кабель АШв1х120; АПВГЭЗх35+1х25; 0,3
АВВГЗх35+1х25:

Приложение Д

Таблица Д. 1 – Время задержи начала эвакуации

Тип и характеристика здания Время задержи начала эвакуации, мин, при типах систем оповещения
W1 W2 W3 W4
Административные, торговые и производственные здания (посетители находятся в бодрствующем состоянии, знакомы с планировкой здания и процедурой эвакуации) <1 3 >4 <4
Магазины, выставки, музеи, досуговые центры и другие здания массового назначения, (посетители находятся в бодрствующем состоянии, но могут быть не знакомы с планировкой здания и процедурой эвакуации) <2 3 >6 <6
Общежития, интернаты (посетители могут находиться в состоянии сна, но знакомы с планировкой здания и процедурой эвакуации) <2 4 >5 <5
Отели и пансионаты (посетители могут находиться в состоянии сна, и быть не знакомыми с планировкой здания и процедурой эвакуации) <2 4 >6 <5
Госпитали, дома престарелых и другие тому подобные заведения, (значительное число посетителей может нуждаться в помощи) <3 5 >8 <8

Примечание: Характеристика системы оповещения

W1 – оповещение и управление эвакуацией оператором;

W2 – использование записанных заранее типовых фраз и информационных табло;

W3 – сирена пожарной сигнализации;

W4 – без оповещения.


Приложение Е

Таблица Е.1 – Площадь проекции человека

Таблица Е.2 – Зависимость скорости и интенсивности движения от плотности людского потока

Плотность потока D,

Горизонтальный путь Дверной проем Лестница вниз Лестница вверх
0,01 100 1,0 1,0 100 1,0 60 0,6
0,05 100 5,0 5,0 100 5,0 60 3,0
0,1 80 8,0 8,7 95 9,5 53 5,3
0,2 60 12,0 13,4 68 13,6 40 8,0
0,3 47 14,1 15,6 52 16,6 32 9,6
0,4 40 16,0 18,4 40 16,0 26 10,4
0,5 33 16,5 19,6 31 15,6 22 11,0
0,6 27 16,2 19,0 24 14,4 18 10,6
0,7 23 16,1 18,5 18 12,6 15 10,5
0,8 19 15,2 17,3 13 10,4 10 10,0
0,9 и более 15 13,5 8,5 10 7,2 8 9,9
Примечание. Табличное значение интенсивности движения в дверном проеме при плотности потока 0,9 и более, равное 8,5 м/мин, установлено для дверного проема шириной 1,6 м и более.

На рис. представлена схема плана типового этажа корпуса технического вуза. Здание второй степени огнестойкости имеет 7 этажей На этаже размещаются помещения кафедр и помещения для занятий по половине группы, размером в осях 6 ´ 6 м, которые могут объединяться в общую аудиторию для занятий целой группы (размером в осях 6 ´ 9 м и 6 ´ 12 м).



Схема плана типового этажа технического вуза

Абсолютно симметричное размещение лестничных клеток (А, Б, В и Г) позволяет подразделить план на четыре равные зоны. На рис. приведена схема планировки одной из таких зон, обслуживаемых лестничной клеткой Б, с указанием количества людей, эвакуирующихся из каждой аудитории, и маршрутов их движения в лестничную клетку Расчетная схема путей эвакуации и движения людских потоков дана на рис.

В каждом помещении аудиторий находится менее 50 чел. и расстояние от любой точки в ней до выхода не превышает 25 м, поэтому согласно п. 3.5 и СНиП 2.08.02-85 из аудиторий может быть один выход в коридор с минимальной шириной двери выхода из помещения, равной 0,9 м.

Ширина коридора в свету d К составляет 2,6 м. Поток в коридоре формируется на участках от выходов из помещений, наиболее удаленных от лестничной клетки Б, до дверного проема, отдаляющего его от поэтажного холла, т. е. на участках (слева и справа по отношению к лестничной клетке) длиной l 1 = 6 + 6 + 1,5 = 13,5 м. Плотность людского потока на участке его формирования в коридоре определяется как количество людей N, выходящих на него, к его площади. При этом следует учитывать неодновременность использования всех помещений, принимая расчетную численность студентов с коэффициентом К = 0,8 от проектной вместимости помещений. Следовательно, расчетная плотность людского потока на участке формирования в коридоре определится по формуле

D К = = 6 × 14 × 0,8 / 2,6 × 13,5 = 1,91 ~ 2 чел/м 2 .

По табл. 6 СНиП 2.08.02-85 этому значению плотности соответствует допустимое расстояние от наиболее удаленного выхода из помещения до выхода в лестничную клетку:

60 м - из помещений, расположенных между лестничными клетками;

30 м - из помещений с выходами в тупиковый коридор.

Фактические расстояния в рассматриваемом проекте составляют 13,5 + 6 + 2 = 21,5 м, что меньше нормативных.

Двигаясь по пути эвакуации, людские потоки проходят через три дверных проема. Следует определить их требуемую ширину , согласно данным п. 3.9 СНиП 2.08.02-85 по формуле

S NK / 165 = Np \ 165 ,

Где S NK - суммарное количество людей (с учетом неодновременности использования аудиторного фонда вуза), чел.; 165 - нормативное для зданий I и II степени огнестойкости количество людей, пропускаемых 1 м ширины двери без образования скоплений людей перед ней, чел.

Через дверной проем, отделяющий коридор от поэтажных холлов, эвакуируется N р = 67,2 чел., следовательно

67,2 / 165 = 0,41 м,

И поэтому может быть принята равной минимально допустимой ширине 1,2 м.

Перед следующим дверным проемом на путях эвакуации расположен дверной проем в лифтовый холл. Передним сливаются людские потоки, идущие с правой и левой частей коридора. Суммарное расчетное количество людей составляет N p = 2 × 67,2 = 134,4 чел. Требуемая расчетная ширина дверей этого выхода составит

134,4 / 165 = 0,81 м

И должна быть принята минимально допустимой, равной 1,2 м.

Поскольку количество людей, эвакуирующихся через последующий выход (выход из лифтового холла в лестничную клетку), равно количеству людей, эвакуирующихся через предыдущий выход, то ширина этого выхода должна быть такой же, т. е. d 3 = d 2 = 1,2 м.

Ширина лестничного марша согласно требованиям п. 3.19 должна быть не менее ширины выхода в лестничную клетку с этажа, т. е. d 4 = 1,2 м и соответствует минимальной (п. 3.19) для рассматриваемого вида зданий.

Случайные статьи

Вверх