Прогнозирование опасных факторов пожара при тушении с использованием интегрального метода. Прогнозирование опасных факторов пожара в помещении общественного здания Практикум прогнозирования опасных факторов пожаров тимофеева

Введение


В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно-обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

·при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;

·при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);

·при оценке фактических пределов огнестойкости;

·для расчета пожарного риска и многих других целей.

Современные методы прогнозирования ОФП позволяют не только спрогнозировать вероятные пожары, но и смоделировать уже произошедшие пожары для их анализа и оценки действия РТП.

Опасными факторами пожара, воздействующими на людей и материальные ценности (согласно Федеральному закону Российской Федерации от 22 июля 2008 г. №123-ФЗ «Технический регламент о требованиях пожарной безопасности»), являются:

·пламя и искры;

·повышенная температура окружающей среды;

·пониженная концентрация кислорода;

·токсичные продукты горения и термического разложения;

·снижение видимости в дыму;

·тепловой поток.

С научных позиций опасные факторы пожара являются физическими понятиями и, следовательно, каждый из них представлен в количественном отношении физической величиной.

Современные научные методы прогнозирования ОФП основываются на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещении с течением времени, а также параметров состояния ограждающих конструкций этого помещения и различных элементов (технологического) оборудования.

Основные уравнения, из которых состоит математическая модель пожара, вытекают из фундаментальных законов природы: первого закона термодинамики и закона сохранения массы. Эти уравнения отражают и увязывают всю совокупность взаимосвязанных и взаимообусловленных процессов, присущих пожару, таких как тепловыделение в результате горения, дымовыделение в пламенной зоне, изменение оптических свойств газовой среды, выделение и распространение токсичных газов, газообмен помещения с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций, снижение концентрации кислорода в помещении.

Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара. Математические модели пожара в помещении условно делятся на три вида: интегральные, зонные и полевые (дифференциальные).

Чтобы сделать научно обоснованный прогноз, необходимо обратиться к той или иной модели пожара. Выбор модели определяется целью (задачами) прогноза (исследования) для заданных условий однозначности (характеристики помещения, горючего материала и т.д.) путем решения системы дифференциальных уравнений, которые составляют основу выбранной математической модели.

Интегральная модель пожара позволяет получить информацию (т.е. позволяет сделать прогноз) о среднеобъемных значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять (соотносить) средние (т.е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма и т.д.

Однако даже при использовании интегральной модели пожара получить аналитическое решение системы обыкновенных дифференциальных уравнений в общем случае невозможно. Реализация выбранного метода прогнозирования возможна только путем ее численного решения при помощи компьютерного моделирования.


1. Тема и задачи курсовой работы


Курсовая работа является одним из видов самостоятельной учебной работы слушателей по освоению учебного материала и завершающим этапом изучения методов прогнозирования ОФП на базе математических моделей пожара, рассматриваемых на дисциплине «Прогнозирование опасных факторов пожара», а также формой контроля со стороны учебного заведения за уровнем соответствующих знаний и умений курсантов.

Курсовая работа ставит перед слушателями следующие задачи:

·закрепить и углубить знания в области математического моделирования динамики опасных факторов пожара;

·на конкретных примерах получить сведения о степени взаимообусловленности и взаимосвязанности всех физических процессов, присущих пожару (газообмен помещения с окружающей средой, тепловыделение в пламенной зоне и нагревание строительных конструкций, дымовыделение и изменение оптических свойств газовой среды, выделение и распространение токсичных газов и др.);

·усвоить методику прогнозирования ОФП с помощью компьютерной программы, реализующей интегральную математическую модель пожара;

·получить навыки пользования компьютерными программами при исследовании пожаров.

Тема и цель курсовой работы - прогнозирование опасных факторов пожара в помещении (назначение и другие характеристики которого определяются вариантом задания).


2. Требования к содержанию и оформлению курсовой работы


Курсовая работа выполняется в соответствии с методическими указаниями и состоит из расчетно-пояснительной записки и графической части. Расчетно-пояснительная записка состоит из пояснительного текста, результатов расчетов в виде таблиц, чертежей и схем, отражающих геометрические характеристики объекта и картину газообмена в помещении при пожаре. Графическая часть представлена графиками развития опасных факторов пожара в помещении в течение времени.

Необходимый справочный материал дан в приложениях к указаниям и в рекомендуемой литературе.

Прежде чем приступить к выполнению курсовой работы, необходимо: изучить материал по дисциплине, ознакомиться с методическими указаниями, подобрать рекомендуемую учебную, справочную и нормативную литературу. Ответы по каждому пункту задания выдаются в развернутом виде с обоснованием.

Работа должна быть выполнена аккуратно, чернилами черного цвета или напечатана черным шрифтом на печатных листах формата А4. Текст в пояснительной записке следует писать разборчиво, без сокращений слов (за исключением общепринятых сокращений), на одной стороне листа. Компьютерный вариант работы набирается в текстовом процессоре Word, шрифт Times New Roman с 1-1,5 межстрочным интервалом. Размер шрифта для текста - 12 или 14, для формул - 16, для таблиц - 10, 12 или 14. Размеры полей на листе - 2 см со всех сторон. Абзацный отступ не менее 1 см.

При расчете необходимого времени эвакуации следует приводить формулы и подставляемые в них величины, единицы измерения физических величин, получаемых в ответе.

Заголовки разделов и глав пишутся прописными буквами. Заголовки подразделов - строчными буквами (кроме первой прописной). Переносы слов в заголовках не допускаются. Точка в конце заголовка не ставится. Нумерация таблиц, рисунков и графиков должна быть сквозной.

Страницы курсовой работы должны быть пронумерованы арабскими цифрами. Первой страницей является титульный лист, второй - задание на выполнение курсовой работы, третьей - содержание и т.д. На первой странице курсовой работы номер не ставится. Страницы курсовой работы, кроме титульного листа, и задания на курсовую работу должны быть пронумерованы. Бланк задания на выполнение курсовой работы приведен в приложении 1.

На титульном листе должны быть указаны:

наименование министерства, учебного заведения и кафедры, на которой выполняется курсовая работа;

тема курсовой работы и вариант задания;

Ф.И.О. слушателя, выполнившего курсовую работу;

звание, должность, Ф.И.О. научного руководителя;

город и год выполнения курсовой работы.

В конце работы необходимо указать использованную литературу (фамилия и инициалы автора, полное наименование книги, издательство и год издания). Оформленную курсовую работу слушатель должен подписать, поставить дату и сдать на проверку на факультет заочного обучения. Наличие допуска к защите является основанием для вызова слушателя на лабораторно-экзаменационную сессию.

Если работа удовлетворяет требованиям, предъявляемым к ней, то руководитель допускает ее к защите. Работа, признанная не отвечающим предъявленным требованиям, возвращается обучаемому на доработку.

Защита курсовых работ слушателями факультета заочного обучения может проводиться во время сессии. Результаты защиты оцениваются по четырехбалльной системе: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Руководитель проекта проставляет оценку на титульном листе работы, в ведомости, зачетной книжке обучаемого и заверяет подписью. Проставляются только положительные оценки.

При получении неудовлетворительной оценки слушатель обязан повторно выполнить работу по новой теме или переработать прежнюю.


3. Выбор варианта задания и исходные данные


Вариант задания на выполнение курсовой работы определяется по номеру в списке учебной группы (по номеру в журнале группы). Номер варианта указывается на титульном листе курсовой работы. В зависимости от года поступления слушателей на обучение (набор 2010 г., 2011 г. и т.д.) исходные данные для расчетов (температура атмосферного воздуха и внутри помещения, размеры помещения и проемов, параметры горючей нагрузки и т.д.) приведены в таблицах 1-5 (Приложение 2).

Данные, полученные с помощью компьютерного моделирования и необходимые для выполнения главы 3, выдаются по вариантам индивидуально в электронном виде на установочной лекции по дисциплине.

Дополнительные данные для всех вариантов:

критическая температура для остекления - 300°С;

число проемов - 2 (окна и дверь);

противодымная механическая вентиляция - отсутствует;

автоматическая установка пожаротушения (АУП) - отсутствует;

все остальные не указанные параметры принять по умолчанию.

Сокращения , принятые при изложении курса «Прогнозирование опасных факторов пожара»:

ОФП - опасные факторы пожара;

ПДЗ - предельно-допустимое значение опасного фактора пожара;

ПРД - плоскость равных давлений (нейтральная плоскость);


1.В соответствии с вариантом задания в 1 главе курсовой работы произвести расчет исходных параметров горючей нагрузки в рассматриваемом помещении.

2.Начертить план здания, указать на плане размеры помещения и горючей нагрузки.

.В главе 2 привести описание системы дифференциальных уравнений, на основе которых создана интегральная математическая модель пожара в помещении, с полным разъяснением всех вошедших в нее физических величин.

.В соответствии с вариантом задания на выполнение курсовой работы взять у преподавателя готовые табличные данные (таблица 1) по динамике развития среднеобъемных значений ОФП при свободном развитии пожара, рассчитанные с помощью компьютерной программы INTMODEL, реализующей интегральную математическую модель пожара в помещении.

5.По табличным данным построить соответствующие графические зависимости среднеобъемных параметров от времени развития пожара: m(t);


µ m (t); lвид(t); (t); (t); (t); сm (t); Y*(t); Sпож (t); Gв (t); Gг (t); ДP(t).


6.Сделать описание и сравнительные выводы по полученным графикам, объяснить скачки на графиках (при их наличии).

7.Руководствуясь рассчитанными с помощью компьютерной программы данными и графическими зависимостями ОФП от времени, в 4 главе курсовой работы охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий, в целом описать прогноз развития пожара.

.Определить критическую продолжительность пожара по условию достижения каждым опасным фактором пожара предельно допустимого (среднеобъемного) значения и необходимое время эвакуации людей из рассматриваемого помещения:

а) по данным математического моделирования (свести результаты в таблицу 2);

b) по методике определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404 к пункту 33 (Методики определения расчетных величин пожарного риска на производственных объектах).

Полученные результаты расчетов отразить в 4 главе курсовой работы, там же сделать выводы: в чем сходство и различие этих методик, чем можно объяснить различие в результатах расчетов.

9.Согласно результатам таблицы 2 сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении. В случае их неэффективной работы предложить им альтернативную замену (приложение 3).

10.Провести расчеты параметров ОФП для уровня рабочей зоны (ОФПл) при свободном развитии пожара в момент времени 11 минут, согласно формуле:


(ОФПл - ОФП0) = (ОФПm - ОФП0)·Z,


где ОФПл - локальное значение ОФП;

ОФП0 - начальное значение ОФП;

ОФПm - среднеобъемное значение опасного фактора пожара;- безразмерный параметр, вычисляемый по формуле:

При H £ 6 м,


где h - высота рабочей зоны, м;

Н - высота помещения, м.

11.Результаты расчетов ОФП для уровня рабочей зоны внести в таблицу в 5 главе курсовой работы.

12.На основании полученных расчетов для времени 11 минут:

а) привести схему газообмена в помещении для времени развития пожара 11 минут при свободном развитии пожара;

b) дать подробную характеристику оперативной обстановки на пожаре по расчетам ОФП для уровня рабочей зоны, предложить меры по проведению безопасной эвакуации людей.

13.Сделать общий вывод по курсовой работе. Вывод должен включать:

а) краткое описание объекта;

b) анализ ОФП, достигших своего предельно допустимого значения на 11 минуте при свободном развитии пожара;

c) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d) анализ своевременности срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e) описание действий персонала объекта при возникновении пожара, исходя из данных, полученных при расчетах;

f) описание действий пожарных подразделений, исходя из положения, что время их прибытия - 10 минута от начала развития пожара;

g) рекомендации владельцу помещения и пожарным расчетам, позволяющие обеспечить безопасную эвакуацию в случае возникновения пожара в помещении. Рекомендации следует увязать с результатами прогнозирования динамики ОФП для данного помещения;

h) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

14.В конце курсовой работы привести список использованной литературы.


5. Образец выполнения курсовой работы


МЧС РОССИИ

Федеральное Государственное бюджетное образовательное

учреждение высшего профессионального образования

«Уральский институт Государственной противопожарной службы

Министерства Российской Федерации по делам гражданской обороны,

чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»

Кафедра физики и теплообмена

КУРСОВАЯ РАБОТА

Тема: Прогнозирование опасных факторов пожара в складском помещении

Вариант №35

Выполнил:

слушатель учебной группы З-461

старший лейтенант внутренней службы Иванов И.И.

Проверил:

старший преподаватель кафедры

физики и теплообмена, к.п.н., капитан внутренней службы

Субачева А.А.

Екатеринбург


на выполнение курсовой работы

по дисциплине «Прогнозирование опасных факторов пожара»

Слушатель Иванов Иван Иванович

Вариант №35 Курс 4 Группа З-461

Наименование объекта: склад хлопка в тюках


Исходные данные

Блок атмосферадавление, мм. рт. ст.760температура, 0С 20Блок помещениедлина, м60высота, м6ширина, м24температура, 0С20проем 1 - штатный (дверь)нижний срез, м0? ширина, м3,6верхний срез, м3вскрытие, 0С20проем 2 - штатный (окна)? ширина, м24нижний срез, м1,2вскрытие, 0С300верхний срез, м2,4Блок нагрузкавид горючего материалахлопок в тюкахдымовыделение Нп*м2/кг0,6длина, м32,9выделение СО, кг/кг0,0052ширина, м13,1выделение СО2, кг/кг0,578количество ГН, кг4320удельная скорость выгорания, кг/м2*с0,0167выделение тепла МДж/кг16,7скорость распространения пламени, м/с0,0042потребление кислорода кг/кг1,15

Срок сдачи: «____»__________

Слушатель____________________ Руководитель_______________

1. Исходные данные


Помещение пожара расположено в одноэтажном здании. Здание построено из сборных железобетонных конструкций и кирпича. В здании наряду с помещением склада находятся два рабочих кабинета. Оба помещения отделены от склада противопожарной стеной. План объекта приведен на рисунке 1.

(Требуется проставить на схеме размеры помещения и расчетную массу горючей нагрузки согласно своему варианту!)


Рис. 1. План здания


Размеры склада:

длина l1 = 60 м;

ширина l2 = 24 м;

высота 2h = 6 м.

В наружных стенах помещения склада имеется 10 одинаковых оконных проемов. Расстояние от пола до нижнего края каждого оконного проема YH = 1,2 м. Расстояние от пола до верхнего края проема YB = 2,4 м. Суммарная ширина оконных проемов = 24 м. Остекление оконных проемов выполнено из обычного стекла. Остекление разрушается при среднеобъемной температуре газовой среды в помещении, равной 300°С.

Помещение склада отделено от рабочих кабинетов противопожарными дверьми, ширина и высота которых 3 м. При пожаре эти проемы закрыты. Помещение склада имеет один дверной проем, соединяющий его с наружной средой. Ширина проема равна 3,6 м. Расстояние от пола до верхнего края дверного проема Yв = 3, Yн =0. При пожаре этот дверной проем открыт, т.е. температура вскрытия 20 0C.

Полы бетонные, с асфальтовым покрытием.

Горючий материал представляет собой хлопок в тюках. Доля площади, занятая горючей нагрузкой (ГН) = 30%.

Площадь пола, занятая ГН, находится по формуле:


где? площадь пола.


Количество горючего материала на 1 Р0 = 10. Общая масса горючего материала.

Горение начинается в центре прямоугольной площадки, которую занимает ГМ. Размеры этой площадки:



Свойства ГН характеризуются следующими величинами:

теплота сгорания Q = 16,7 ;

выделение оксида углерода = 0,0052 .

Механическая вентиляция в помещениях отсутствует. Естественная вентиляция осуществляется через дверные и оконные проемы.

Отопление центральное водяное.

Внешние атмосферные условия:

ветер отсутствует, температура наружного воздуха 200C = 293 К

давление (на уровне Y=h) Ра = 760 мм. рт. ст., т.е. = 101300 Па.

Параметры состояния газовой среды внутри помещения перед пожаром :

Т = 293 К (согласно выбранному варианту);

Р = 101300 Па;


Другие параметры:

критическая температура для остекления? 300 оС;

материал ограждающих конструкций - железобетон и кирпич;

температура воздуха в помещении - 20 оС;

автоматическая система пожаротушения? отсутствует;

противодымная механическая вентиляция? отсутствует.


2. Описание интегральной математической модели свободного развития пожара в складском помещении


Интегральная математическая модель пожара в помещении разработана на основе уравнений пожара, изложенных в работах . Эти уравнения вытекают из основных законов физики: закона сохранения вещества и первого закона термодинамики для открытой системы и включают в себя:

уравнение материального баланса газовой среды в помещении:


V(dсm/dф) = GB + ш - Gr, (1)


где V - объем помещения, м3; сm - среднеобъемная плотность газовой среды кг/м3; ф - время, с; GB и Gr - массовые расходы поступающего в помещение воздуха и уходящих из помещения газов, кг/с; ш - массовая скорость выгорания горючей нагрузки, кг/с;

уравнение баланса кислорода:


Vd(p1)/dф = xGB - x1n1Gr - ш L1Ю, (2)


где x1 - среднеобъемная массовая концентрация кислорода в помещении; х - концентрация кислорода в уходящих газах; n1 - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах х1, n1 = х/x1; L1 - скорость потребления кислорода при горении, p1 - парциальная плотность кислорода в помещении;

уравнение баланса продуктов горения:


Vd(p2)/dф = ш L2Ю - x2n2Gr, (3)

где Xi - среднеобъемная концентрация i-гo продукта горения; Li - скорость выделения i-гo продукта горения (СО, СО2); ni - коэффициент, учитывающий отличие концентрации i-гo продукта в уходящих газах x от среднеобъёмного значения xi, ni = xi; р2 - парциальная плотность продуктов горения в помещении;

уравнение баланса оптического количества дыма в помещении:


Vd ()/d =Dш - n4 Gr/ рm - кcSw, (4)


где - среднеобъемная оптическая плотность дыма; D - дымообразующая способность ГМ; n4 - коэффициент, учитывающий отличие концентрации дыма в уходящих из помещения нагретых газах от среднеобъемной оптической концентрации дыма, n4= мmг /мm;

уравнение баланса энергии U:


dU/dф = hQpнш + iгш + СрвТвGв - СрТmm Gr - Qw, (5)


где Pm - среднеобъемное давление в помещении, Па; Срm, Тm - среднеобъемные значения изобарной теплоемкости и температуры в помещении; Q p н - низшая рабочая теплота сгорания ГН, Дж/кг; Срв, Тв - изобарная теплоемкость и температура поступающего воздуха, К; iг - энтальпия газификации продуктов горения ГН, Дж/кг; m - коэффициент, учитывающий отличие температуры Т и изобарной теплоемкости Срг уходящих газов от среднеобъемной температуры Тm и среднеобъемной изобарной теплоемкости Срm,


m = СргТг/СрmТm;


Ю - коэффициент полноты сгорания ГН; Qw - тепловой поток в ограждение, Вт.

Среднеобъемная температура Тm связана со среднеобъёмным давлением Рm и плотностью рm уравнением состояния газовой среды в помещении:


Pm= сmRmTm.(6)


Уравнение материального баланса пожара с учетом работы приточно-вытяжной системы механической вентиляции, а так же с учетом работы системы объемного тушения пожара инертным газом примет следующий вид:


VdPm/ dф = ш + GB - Gr + Gпр - Gвыт + Gов, (7)


Вышеуказанная система уравнений решается численными методами с помощью компьютерной программы. Примером может служить программа INTMODEL.


. Расчет динамики ОФП с помощью компьютерной программы INTMODEL


Результаты компьютерного моделирования

Учебная компьютерная программа INTMODEL реализует описанную выше математическую модель пожара и предназначена для расчета динамики развития пожара жидких и твердых горючих веществ и материалов в помещении. Программа позволяет учитывать вскрытие проемов, работу систем механической вентиляции и объемного тушения пожара инертным газом, а также учитывает кислородный баланс пожара, позволяет рассчитывать концентрацию оксидов углерода СО и СО2, задымленность помещения и дальность видимости в нем.

Таблица 1. Динамика развития параметров газовой среды в помещении и координат ПРД

Вpемя, минТемпература tm, 0СОптическая плотность дыма µm, Нп/мДальность видимости lm, м,

масс.%, масс.%сm, кг/м3Нейтральная плоскость - ПРД Y*, мGв, кг/сGг, кг/сДP, ПаSпож, м2020064,6223001,20531,50,0080,00800120064,6222,999001,2051,150,160,3290,010,2221064,6222,99400,0031,20261,040,411,0650,050,8322064,6222,9800,0091,19620,960,6762,0720,181,8425064,6222,95100,0221,18410,910,9493,2480,433,19530064,6222,90300,0451,16580,891,2374,490,824,99636064,6222,8290,0010,0781,14120,871,5485,7021,347,18745064,6222,7240,0010,1271,11090,881,896,8111,979,78855064,6222,580,0020,1921,0760,892,267,7722,6812,77967064,6222,3910,0030,2791,03850,912,658,5563,4216,171081064,6222,1490,0040,390,99760,912,9319,3914,2719,9711970,00164,6221,8450,0050,530,95410,913,2610,0515,1524,17 121150,00164,6221,4710,0060,7020,90950,933,63110,5276,0128,78131350,00164,6221,0190,0080,9110,86550,954,03610,8256,8333,81141560,00164,6220,4830,011,1610,82350,984,46610,9677,5739,25151770,00164,6219,8620,0131,4550,78461,014,91510,9778,2245,11161980,00264,6219,1580,0161,7950,74991,045,37210,8828,7451,41172180,00364,6218,3820,022,180,72021,085,83710,7019,1458,14182350,00464,6217,5540,0232,6080,69591,126,29810,4639,4165,29192480,00664,6216,7020,0283,0750,67741,166,73710,1969,5572,87202580,00964,6215,8590,0323,5710,66481,197,1469,9169,5980,83212640,01364,6215,0580,0374,0880,65771,237,5059,6479,5389,13222660,01864,6214,3270,0414,6120,65531,267,7979,4089,4197,71232650,02564,6213,680,0465,1340,65681,288,0289,1989,25106,5242610,03364,6213,1210,0515,6450,66121,38,1299,0789,1115,41252560,04257,0812,6480,0556,1380,66761,38,089,0698,99124,38262500,05146,7512,2510,0596,6110,67481,338,3348,7958,7133,33272450,0639,4711,9180,0647,060,68241,439,2347,9978,05141,51282430,0734,0111,5990,0687,5260,68492,0716,033,6534,76149,08292410,0829,7911,3370,0727,9760,68742,116,3183,4874,59156,38302370,0926,5811,1320,0758,390,69252,0315,4353,8924,9163,28312320,09924,1410,970,0798,7650,69991,8513,3834,9785,69169,74322250,10722,310,8480,0829,0950,70921,5410,0637,1147,1175,72332190,11420,9210,7580,0849,3840,71851,358,1848,5217,87181,31342140,1219,8610,6750,0879,6540,72591,37,6418,9198,01186,62352100,12519,0210,5950,0899,9120,73141,287,4549,0297,99191,74362070,1318,3110,5190,09110,1570,73581,287,3819,0497,94196,69372050,13417,7110,4480,09310,3920,73941,277,3319,0577,89201,5382030,13817,210,3840,09510,6150,74241,277,2859,0667,85206,18392010,14216,7510,3240,09710,8270,7451,277,2449,0757,82210,76402000,14616,3510,2690,09911,030,74731,277,2079,0847,79215,24411980,14915,9910,2190,10111,2230,74921,267,1749,0927,76219,62421970,15215,6810,1720,10311,4080,7511,267,1449,17,74223,92431960,15515,3910,1280,10411,5840,75261,267,1179,1087,72228,14441960,15715,1310,0880,10611,7530,7541,267,0929,1157,71232,3451950,1614,8910,0490,10711,9140,75521,267,079,1217,69236,38461940,16214,6810,0130,10912,0690,75631,267,059,1277,68240,4471930,16414,489,9790,1112,2170,75731,267,0319,1337,67244,36481890,16614,3510,0550,1112,2490,76531,448,5737,6846,73248,07491740,16314,5710,4160,10811,9570,78951,579,4396,6955,85250,96501570,15715,210,9260,10311,4720,82081,659,8145,9975,09253,06511400,14716,211,5050,09810,8920,85581,729,9275,4134,4254,53521230,13617,5212,1040,09310,2830,89291,779,8384,8973,77255,54531060,12419,1312,6920,0879,6890,93081,819,5584,4453,2256,2254920,11321,0113,2440,0829,1370,96811,849,0994,0612,69256,6655790,10323,1513,7460,0788,6421,00351,868,4953,742,26256,9556680,09325,5514,1910,0748,2081,0361,867,7953,471,89257,1457590,08428,2114,5780,077,8351,06471,836,9213,3411,62257,2557,5550,0829,7514,7590,0697,6621,07771,816,5173,2621,49257,3


Изменение среднеобъемных параметров газовой среды во времени


Рис. 2. Изменение среднеобъемной температуры газовой среды во времени


Описание графика: Рост температуры в первые 22 минуты пожара можно объяснить горением в режиме ПРН, что обусловлено достаточным содержанием кислорода в помещении. С 23 минуты пожар переходит в режим ПРВ в связи со значительным снижением концентрации кислорода. С 23 минуты по 50 минуту интенсивность горения постоянно снижается, несмотря на продолжающееся возрастание площади горения. Начиная с 50 минуты, пожар снова переходит в режим ПРН, что связано с увеличением концентрации кислорода в результате выгорания горючей нагрузки.

Выводы по графику: На графике температуры можно условно выделить 3 стадии развития пожара. Первая стадия - нарастание температуры (приблизительно до 22 мин.), вторая - квазистационарная стадия (с 23 мин. до 50 мин.), и третья - стадия затухания (с 50 мин. до полного выгорания горючей нагрузки).


Рис. 3. Изменение оптической плотности дыма во времени


Описание графика: В начальной стадии пожара выделение дыма незначительно, полнота сгорания максимальна. В основном дым начинает выделяться после 22 минуты от начала возгорания, а превышение ПДЗ по среднеобъемному значению плотности дыма произойдет примерно на 34 минуте. Начиная с 52 минуты, с переходом в режим затухания, задымление уменьшается.

Выводы по графику: Выделение значительных количеств дыма началось только с переходом пожара в режим ПРВ. Опасность снижения видимости в дыму в данном помещении невелика - ПДЗ будет превышено ориентировочно только после 34 минут от начала возгорания, что так же можно объяснить наличием в помещении открытых проемов большого размера (дверь).


Рис. 4. Изменение дальности видимости в помещении во времени


Описание графика: На протяжении 26 минут развития пожара дальность видимости в горящем помещении остается удовлетворительной. С переходом в режим ПРВ видимость в горящем помещении быстро ухудшается.

Выводы по графику: Дальность видимости связана с оптической плотностью дыма соотношением. То есть дальность видимости обратно пропорциональна оптической плотности дыма, поэтому при увеличении задымления дальность видимости уменьшается и наоборот.


Рис. 5. Изменение среднеобъемной концентрации кислорода во времени


Описание графика: В первые 9 минут развития пожара (начальная стадия) среднеобъемная концентрация кислорода почти не изменяется, т.е. потребление кислорода пламенем низкое, что может быть объяснено малыми размерами очага горения в это время. По мере увеличения площади горения содержание кислорода в помещении снижается. Примерно с 25 минуты от начала горения содержание кислорода стабилизируется на уровне 10-12 масс.% и остается почти неизменным примерно до 49-й минуты пожара. Таким образом, с 25-й по 49-ю минуту в помещении реализуется режим ПРВ, т.е. горение в условиях недостатка кислорода. Начиная с 50-й минуты содержание кислорода увеличивается, что соответствует стадии затухания, при которой поступающий воздух снова постепенно заполняет помещение.

Выводы по графику: график концентрации кислорода, аналогично графику температуры, позволяет выявить моменты смены режимов и стадий горения. Момент превышения ПДЗ по кислороду на данном графике отследить нельзя, для этого понадобится пересчитать массовую долю кислорода в его парциальную плотность, используя значение среднеобъемной плотности газа и формулу .

Рис. 6. Изменение среднеобъемной концентрации СО во времени развития пожара


Описание графика: сделать описание и выводы по графикам по аналогии с вышеприведенными.

Выводы по графику:


Рис. 7. Изменение среднеобъемной концентрации СО2 во времени


Описание графика:

Выводы по графику:

Рис. 8. Изменение среднеобъемной плотности газовой среды во времени


Описание графика:

Выводы по графику:


Рис. 9. Изменение положения плоскости равных давлений во времени


Описание графика:

Выводы по графику:

Рис. 10. Изменение притока свежего воздуха в помещение от времени развития пожара


Описание графика:

Выводы по графику:


Рис. 11. Изменение оттока нагретых газов из помещения от времени развития пожара


Описание графика:

Выводы по графику:

Рис. 12. Изменение разности давлений во времени


Описание графика:

Выводы по графику:


Рис. 13. Изменение площади горения при пожаре во времени


Описание графика:

Выводы по графику:

Описание обстановки на пожаре в момент времени 11 минут


Согласно п. 1 ст. 76 ФЗ-123 «Технический регламент о требованиях пожарной безопасности», время прибытия первого подразделения пожарной охраны к месту вызова в городских поселениях и городских округах не должно превышать 10 минут. Таким образом, описание обстановки на пожаре проводится на 11 минуту от начала пожара.

В начальные моменты времени при свободном развитии пожара параметры газовой среды в помещении достигают следующих значений:

Достигается температура 97°С (переходит пороговое значение 70°C);

Дальность видимости практически не изменилась и составляет 64,62 м, т.е. еще не переходит пороговое значение в 20 м;

Парциальная плотность газов составляет:

с= 0,208 кг/м3, что меньше предельной парциальной плотности по кислороду;

с= 0,005 кг/м3, что меньше предельной парциальной плотности по углекислому газу;

с= 0,4*10-4 кг/м3, что меньше предельной парциальной плотности по угарному газу;

ПРД будет находиться на уровне 0,91 м;

площадь горения составит 24,17 м2.

Таким образом, расчеты показали, что на 11 минуту свободного развития пожара, следующие ОФП достигнут своего предельно допустимого значения: среднеобъемная температура газовой среды (на 10 минуте).


. Время достижения пороговых и критических значений ОФП


Согласно ФЗ-123 «Технический регламент о требованиях пожарной безопасности», необходимым временем эвакуации считается минимальное время достижения одним из опасных факторов пожара своего критического значения.

Необходимое время эвакуации из помещения по данным математического моделирования


Таблица 2. Время достижения пороговых значений

№ п/пПороговые значенияВремя достижения, мин1Предельная температура газовой среды t = 70°C102Критическая дальность видимости 1кр = 20 м333Предельно допустимая парциальная плотность кислорода с = 0,226 кг/м3104Предельно допустимая парциальная плотность двуокиси углерода (с)пред = (с)пред= 0,11 кг/м3не достигается5Предельно допустимая парциальная плотность оксида углерода (с)пред = (с)пред= 1,16*10 -3 кг/м3не достигается6Максимальная среднеобъемная температура газовой среды Тm= 237 + 273 = 510 К307Критическая температура для остекления t = 300°Cне достигается8Пороговая температура для тепловых извещателей ИП-101-1А tпopor= 70°C9

В данном случае минимальным временем для эвакуации из помещения склада является время достижения предельной температуры газовой среды, равное 10 мин.

Вывод:

а) охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий и в целом описать прогноз развития пожара;

b) сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении (см. п. 8 таблица 2). В случае неэффективной работы пожарных извещателей предложить им альтернативу (приложение 3).

Определение времени от начала пожара до блокирования
эвакуационных путей опасными факторами пожара Рассчитаем необходимое время эвакуации для помещения с размерами 60·24·6, пожарной нагрузкой в котором является хлопок в тюках. Начальная температура в помещении 20°С.

Исходные данные:

помещение

свободный объем



безразмерный параметр



температура t0 = 20 0С;

вид горючего материала - хлопок в тюках - ТГМ, n=3;

теплота сгорания Q = 16,7 ;

удельная скорость выгорания = 0,0167 ;

скорость распространения пламени по поверхности ГМ;

дымообразующая способность D = 0,6 ;

потребление кислорода = 1,15 ;

выделение диоксида углерода = 0,578 ;

выделение оксида углерода = 0,0052 ;

полнота сгорания ГМ;

другие параметры

коэффициент отражения б = 0,3;

начальная освещенность Е = 50 Лк;

удельная изобарная теплоемкость Ср = 1,003?10 -3 МДж/кг?К;

предельная дальность видимости =20 м;

предельные значения концентрации токсичных газов:

0,11 кг/м3;

1,16?10-3 кг/м3;

Расчет вспомогательных параметров


А = 1,05?? = 1,05?0,0167? (0,0042)2 = 3,093?10-7 кг/с3

В = 353?Ср?V/(1-) ??Q = 353?1,003?10-3?6912/(1-0.6)?0,97?16,7 = 377,6 кг


В/А = 377,69/3,093?10-7 = 1,22?109 c3

Расчет времени наступления ПДЗ ОФП:

1)по повышенной температуре:



2)по потере видимости:

3)по пониженному содержанию кислорода:


4)по углекислому газу СО2



под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

5)по угарному газу СО



под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

Критическая продолжительность пожара:


tкр= miníý = í746; 772; ý = 746 с.


Критическая продолжительность пожара обусловлена временем наступления предельно допустимого значения температуры в помещении.

Необходимое время эвакуации людей из складского помещения:


tнв = 0,8*tкр/60 = 0,8*746/60 = 9,94 мин.


Сделать заключение о достаточности / недостаточности времени на эвакуацию по данным расчета.

Вывод: сравнить необходимое время эвакуации, полученное различными методами, и, при необходимости, объяснить различия в результатах.


. Расчет динамики ОФП для уровня рабочей зоны. Анализ обстановки на пожаре на момент времени 11 минут


Уровень рабочей зоны согласно ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования» принимается равным 1,7 метра.

Связь между локальными и среднеобъемными значениями ОФП по высоте помещения имеет следующий вид:


(ОФП? ОФПо) = (ОФП? ОФПо)·Z,


где ОФП? локальное (пороговое) значение ОФП;

ОФПо? начальное значение ОФП;

ОФП? среднеобъемное значение опасного фактора;

Z ? безразмерный параметр, вычисленный по формуле (см. п. 4.2).


Таблица 3. Динамика развития ОФП на уровне рабочей зоны

Время, минТm, оС, масс%,

Нп/м, м, масс%, масс%, кг/м3, м120,023,0000,0000064,620,000000,000001,205171,353220,422,9970,0000064,620,000000,001261,204161,306320,822,9920,0000064,620,000000,003791,201471,273422,122,9790,0000064,620,000000,009271,196371,251524,222,9590,0000064,620,000000,018961,188661,243626,722,9280,0000064,620,000420,032861,178301,235730,522,8840,0000064,620,000420,053501,165531,239834,722,8230,0000064,620,000840,080891,150831,243939,822,7430,0000064,620,001260,117541,135031,2511045,722,6410,0000064,620,001690,164301,117801,2511152,422,5130,0004264,620,002110,223281,099481,251 1260,022,3560,0004264,620,002530,295741,080691,260

Площадь пожара составляет 24,17 м.

Температура на уровне рабочей зоны составляет 52,4 0С, что не достигает ПДЗ, равное 70 0С.

Дальность видимости в помещении не изменилась и составляет

2,38/0,00042 = 5666 м.

Концентрация кислорода в норме: 22,513 масс%.

Парциальные плотности О2, СО и СО2 на уровне рабочей зоны равны соответственно:


1,09948?22,513/100 = 0,247 кг/м3;

1,09948?0,00211/100 = 2,3*10-5 кг/м3;

1,09948?0,22328/100 = 0,00245 кг/м3.


Таким образом, расчеты показали, что парциальная плотность кислорода находится выше ПДЗ, а токсичных газов - ниже.


Рис. 14. Схема газообмена в помещении в момент времени 11 минут


На 11 минуте горения газообмен протекает со следующими показателями: приток холодного воздуха составляет 3,26 кг/с, а отток нагретых газов из помещения - 10,051 кг/с.

В верхней части дверного проема идет отток задымленных нагретых газов из помещения, плоскость равных давлений находится на уровне 1,251 м, что ниже уровня рабочей зоны.

Вывод: на основании результатов расчетов дать подробную характеристику оперативной обстановки на момент прибытия пожарных подразделений, предложить меры по проведению безопасной эвакуации людей.


Общий вывод по работе


Сделать общий вывод по работе, включающий:

а) краткое описание объекта;

b) общая характеристика динамики ОФП при свободном развитии пожара;

c) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d) анализ срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e) характеристика оперативной обстановки на момент прибытия пожарных подразделений, предложения по проведению безопасной эвакуации людей;

f) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

Литература


1.Терентьев Д.И. Прогнозирование опасных факторов пожара. Курс лекций / Д.И. Терентьев, А.А. Субачева, Н.А. Третьякова, Н.М. Барбин // ФГБОУ ВПО «Уральский институт ГПС МЧС России». - Екатеринбург, 2012. - 182 с.

2.Кошмаров Ю.А. Прогнозирование ОФП в помещении: Учебное пособие / Ю.А. Кошмаров/ - М.: Академия ГПС МВД России, 2000. -118 с.

Федеральный закон Российской Федерации от 22 июля 2008 г. №123-ФЗ «Технический регламент о требованиях пожарной безопасности».

Приказ МЧС РФ от 10.07.2009 №404 (с изменениями от 14 декабря 2010 г.) «Об утверждении методики определения расчетных величин пожарного риска на производственных объектах». - Пожаровзрывобезопасность. - №8. - 2009. - Стр. 7-12.

Приказ МЧС РФ от 30.06.2009 №382 (с изменениями от 11 апреля 2011) «Об утверждении методики определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности». - Пожарная безопасность №3. - 2009. - Стр. 7-13.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИИЙНЫХ БЕДСТВИЙ

Академия Государственной противопожарной службы

КУРСОВАЯ РАБОТА

ПО ПРОГНОЗИРОВАНИЮ ОФП

Тема: Прогнозирование опасных факторов пожара в помещении общественного здания

Выполнил: слушатель уч. гр. 1111-Б ст. лейт. вн. сл. Машаев Д.Т.

Проверил: к.ю.н, доцент, полковник внутренней службы, Лебедченко О.С.

Москва 2013 год

Введение

1. Исходные данные

4. Определение критической продолжительности пожара и времени блокирования эвакуационных путей

Список литературы

Введение

сигнализация автоматическая система эвакуация

Для разработки экономически оптимальных и эффективных противопожарных мероприятий необходим научно-обоснованный прогноз динамики опасных факторов пожара. Прогнозирование динамики опасных факторов пожара необходимо:

При создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;

При разработке оперативных планов тушения пожаров;

При оценке фактических пределов огнестойкости;

И для многих других целей.

Современные научные методы прогнозирования динамики опасных факторов пожара основываются на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменения параметров состояния среды в помещении с течением времени. А также состояние ограждающих конструкций этого помещения и различных элементов технологического оборудования.

Математические модели пожара в помещении состоят из дифференциальных уравнений, отображающих фундаментальные законы природы: закон сохранения массы и закон сохранения энергии.

Математические модели пожара в помещении делятся на три класса: интегральные, зонные и дифференциальные. В математическом отношении вышеназванные три вида моделей пожара характеризуются разным уровнем сложности. Для проведения расчетов опасных факторов пожара в помещении отделочного цеха мебельного комбината выбираем интегральную математическую модель развития пожара в помещении.

1. Исходные данные. Краткая характеристика объекта

Общественное здание одноэтажное. Здание построено из сборных железобетонных конструкций и кирпича.

Размеры помещения в плане:

Ширина = 12 м;

Д лина = 24 м;

Высота = 4,2 м;

План общественного здания на рисунке п.1.

В наружных стенах помещения общественного здания имеется 3 оконных проема, 1 из которых открытые. Расстояние от пола до нижнего края каждого оконного проема = 0,8 м.Высота оконных проемов=1,8 м. Ширина закрытых оконных проема=2 м, ширина открытого оконного проема=6 м. Остекление оконных проемов выполнено из обычного стекла. Остекление разрушается при среднеобъемной температуре газовой среды в помещении, равной 300 °С.

В противопожарной стене имеется технологический проем шириной и высотой 3 м. При пожаре этот проем открыт.

В общественном здании имеет 2 одинаковых дверных проема, соединяющий с наружной средой. Его ширина=1,2 м и высота = 2,2 м. При пожаре дверные проемы открыты.

Полы бетонные, с асфальтовым покрытием.

Горючий материал представляет собой мебель+линолеум ПВХ (0,9+1) Горючий материал расположен на полу. Размер площадки, занятой горючим материалом: длина=11 м, ширина=5 м. Количество горючего материала составляет 12 00кг.

Сбор исходных данных

Геометрические характеристики объекта.

Выбирается положение центра ортогональной системы координат в левом нижнем углу помещения на плане (рис. п.1). Координатная ось х направлена вдоль длины помещения, ось у - вдоль его ширины, ось z - вертикально вдоль высоты помещения.

Геометрические характеристики:

помещение: длина L=24 м; ширина B=12 м; высота H=4,2 м.

двери (количество дверей N до =2): высота h д1,2 =2,2м; ширина b д1,2 =1,2м; координаты левого нижнего угла двери:y д1 =0 м;x д1 = 10 м;y д2 = 12м; x д2 =4,2м;

открытые окна (количество открытых окон N оо =2): высота h oo 1 ,2 =1,8 м; ширина b oo 1 ,2 = 2 м; координаты одного нижнего угла окна: x oo 1 = 0 м; y oo 1 = 5 м; x oo 2 = 24 м; y oo 2 = 5 м; z oo 1 ,2 =0,8м;

закрытые окна (количество закрытых окон N зо =1): высота h зо1 =1,8 м; ширина b зо1 =6,0м; координаты одного нижнего угла окна: x зо1 = 8 м; y зо1 =12 м; z зо1 =0,8м; температура разрушения остекления Т кр =300С;

технологический проем (количество проемов Nпо=1): высота h п1 = 3,0м; ширина b п1 =3,0м; координаты левого нижнего угла проема: y п1 =18м; x п1 =20,0м.

Свойства горючей нагрузки в ыбираем по типовой базе горючей нагрузки(приложение 3 (мебель+линолеум ПВХ (0,9+1) №11))

низшая теплот а сгорания Q р н = 14 МДж/кг ;

скорость распространения пламени V л = 0,015 м/с;

удельная скорость выгорания Ш 0 = 0,0137 кг/(м 2 с );

удельное дымовыделение D = 53 Нп*м 2 /кг;

удельное потребление кислорода при горении L о2 = 1,369 кг/кг;

выделение окиси углерода L со = 0,03 кг/кг;

выделение двуо к иси углерода L со2 = 1,478 кг/кг;

Остальные характеристики горячей нагрузки:

суммарная масса горячей нагрузки М?=1200 кг;

длина открытой поверхности l пн = 11 м;

ширина открытой поверхности b пн = 5 м;

высота открытой поверхности от уровня пола h пн = 0 м;

Начальные граничные условия.

Задаемся начальными и граничными условиями:

Температура газовой среды помещения равна T m 0 =20? С;

Температура наружного воздуха составляет Т а =20? С;

Давления в газовой среде помещения и наружном воздухе на уровне пола равны Р а = 10 5 Па.

Выбор сценария развития пожара.

Место возникновения горения расположено в центре площадки, занятой ГМ

2. Описание математической модели развития пожара в помещении

Для расчета динамики опасных факторов пожара используем интегральную математическую модель свободного развития пожара в помещении.

Согласно исходным данным в базовой системе дифференциальных уравнений следует положить, что

G пр =0; G выт =0; G ов =0; Q 0 =0;

где G пр и G выт - расходы приточного и вытяжного вентиляторов;

G ов - расход газообразного огнетушащего вещества; Q 0 - тепловой поток, выделяемой системой отопления.

Для пожара при заданных условиях можно принять в уравнении энергии что

т.е. внутренняя энергия среды в помещении при пожаре практически остается неизменной

С учетом сказанного система основных уравнений ИММП имеет вид

;

;

где V - объем помещения, м 3 ; с m ,T m ,p m - соответственно среднеобъемные плотности, температуры и давления; м m - среднеобъемная концентрация продукта горения; X O 2 - среднеобъемная концентрация кислорода.

3. Расчет динамики опасных факторов пожара в помещении

Для прогнозирования ОФП использована интегральная модель математическая модель пожара, которую реализует программа INTMODEL, разработанная на кафедре ИТиГ Академии ГПС МЧС России. В этой программе для численного решения системы дифференциальных уравнений использован метод Рунге-Кутта-Фельберга 4-5 порядка точности с переменным шагом.

Таблица п.3.1 Исходные данные для расчета динамики опасных факторов пожара в помещение

Атмосфера:

Давление, мм.рт.ст.

Температура, °С

Помещение:

Длина, м

Ширина, м

Высота, м

Температура, °С

Количество проемов

Координаты первого проема:

нижний срез, м.

верхний срез, м.

ширина, м.

вскрытие, °С

Координаты второго проема:

нижний срез, м.

верхний срез, м.

ширина, м.

вскрытие, °С

Координаты третьего проема:

нижний срез, м.

верхний срез, м.

ширина, м.

Вид горючей нагрузки: мебель+линолеум ПВХ (0,9+1)

Ширина, м.

Количество, кг.

Выделение тепла, МДж/кг

Потребление О 2 , кг/кг

Дымовыделение, Нп*м 2 /кг

Выделение CO, кг/кг

Выделение CO 2 , кг/кг

Скорость выгорания, кг/(м 2 час)

Линейная скорость пламени, мм/с

Таблица п.3.2 Результаты расчетов динамики опасных факторов пожара в помещении

Вpемя мин

Конц.О2 масс.%

Задымл., Нп/м

Дальн. вид., м.

Конц.СО, масс.%

Конц.СО2, масс.%

Конц.ОВ, масс.%

Таблица п.3.3 Результаты расчетов динамики опасных факторов пожара в помещении

Вpемя мин

Плотн. Газ кг/м3

Избыт. давл., Па

Высота ПРД, м

Пpиток воздуха

Истечение газа

Скорость выгор., г/с

Таблица п.3.4 Результаты расчетов динамики опасных факторов пожара в помещении

Вpемя гор., мин

Конц. ОВ масс.%

Конц.О2 масс.%

Полн.сгор., масс,%

Удельная ск. выг., кг/(м2ч)

Выг. масса, кг

Скор. выг., г/с

Площадь м2

Таблица п3.5 Результаты расчетов динамики опасных факторов пожара в помещении

Вpемя мин

Т-ра поверхности, °С

Коэф. теплообмена, Вт/(м2К)

Плот.тепл. потока, Вт/м2

Тепл. поток, кВт

Примечание:

1. При ф=4.5 мин. разрушается оконное остекление;

2. При ф=5.8 мин. площадь ГМ охвачена огнем полностью;

3. При ф=30.0 мин. полное выгорание горючей нагрузки.

Графики зависимости T m (ф), µ m (ф), X O 2 (ф), X CO 2 (ф), X CO (ф), S пож (ф), Y*(ф), l вид (ф) представлены на рисунке п.3.1-п3.8

4.Определение критической продолжительности пожара и времени блокирования эвакуационных путей

Обеспечению безопасности людей при возможном пожаре необходимо уделять первостепенное значение.

Основополагающий документ, регламентирующий пожарную безопасность в России - ФЗ № 123 "Технический регламент" определяет эвакуацию как один из основных способов обеспечения безопасности людей при пожарах в зданиях и сооружениях.

Основным критерием обеспечения безопасности людей при пожаре * является время блокирования эвакуационных путей ф бл. Время блокирования эвакуационных путей вычисляется путем расчета минимального значения критической продолжительности пожара. Критическая продолжительность пожара есть время достижения предельно допустимых для человека опасных факторов пожара.

Таким образом, для расчета времени блокирования эвакуационных путей ф бл необходимо располагать методом расчета критической продолжительности пожара. Вопрос о точности метода расчета критической продолжительности пожара является ключевым в решении задачи обеспечения безопасной эвакуации людей на пожаре. Недооценка пожарной опасности, равно как и ее переоценка, может привести к большим экономическим и социальным потерям

Определим с помощью полученных на ПЭВМ данных по динамике ОФП время блокирования эвакуационных путей т§„ из помещения цеха. Для этого предварительно найдем время достижения каждым опасным фактором его критического значения.

К опасным факторам пожара, воздействующим на людей и имущество, относятся:

1)пламя и искры;

2)тепловой поток;

3)повышенная температура окружающей среды;

4)повышенная концентрация токсичных продуктов горения и термического разложения;

5)пониженная концентрация кислорода;

6)снижение видимости в дыму.

Критические значения ОФП принимаем по (таблица п.4.1).

Таблица п.4.1

Предельно допустимые значения ОФП

Таким образом, критическое значение температуры на уровне рабочей зоны равно 70°С. Для определения времени достижения температурой этого значения рассчитаем, какова же будет среднеобъемная температура, если на уровне рабочей зоны температура будет критической. Связь между локальными и среднеобъемными значениями ОФП по высоте помещения имеет следующий вид :

(ОФП - ОФП о) = (ОФП m - ОФП о)Z,(п.4.1)

где ОФП - локальное (предельно допустимое) значение ОФП;ОФП 0 - начальное значение ОФП; ОФП m - среднеобъемное значение опасного фактора; Z - параметр, вычисляемый по формуле:

где H - высота помещения, м; h - уровень рабочей зоны, м. Высоту рабочей зоны h определяем по формуле

h = h пл +1,7, (п.4.3)

где h п л - высота площадки, на которой находятся люди, над полом помещения, м.

Наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке . В нашем случае принимаем h пл = 0. Тогда

Значение параметра Z на уровне рабочей зоны будет равно:

Тогда при достижении на уровне рабочей зоны температуры 70°С среднеобъемная температура будет равна:

Этого значения среднеобъемная температура достигает, примерно, через 2,4 минуты после начала пожара (таблица п.3.2).

Для успешной эвакуации людей дальность видимости при задымлении помещения при пожаре должна быть не меньше расстояния от наиболее удаленного рабочего места до эвакуационного выхода. Дальность видимости на путях эвакуации должна быть не менее 20 м [ 2 ]. Дальность видимости связана с оптической плотностью дыма следующим соотношением :

l пр =2,38/м(4.4)

Отсюда, предельная дальность видимости на уровне рабочей зоны будет соответствовать следующему значению оптической плотности дыма:

l пр =0,119 Нп/м

При этом среднеобъемный уровень задымленности будет равен:

По таблице п.3.2 получаем ф м = 3,8 минут.

Предельная парциальная плотность кислорода на путях эвакуации составляет 0,226 кг/м 3 .

При достижении на уровне рабочей зоны парциальной плотностью О 2 этого значения, среднеобъемная плотность кислорода составит:

Для определения времени достижения концентрацией кислорода этого значения строим график зависимости среднеобъемной плотности кислорода от времени пожара (рисунок п.4.1).

В соответствии с рисунком п.3.9 время достижения критического значения парциальной плотности кислорода составляет 2,3 минуты.

Предельная парциальная плотность оксида углерода на путях эвакуации составляет 1,16·10 -3 кг/м 3 . При достижении на уровне рабочей зоны парциальной плотностью СО этого значения, среднеобъемная плотность оксида углерода составит:

Такого значения среднеобъемная парциальная плотность СО за время расчета не достигает (рисунок п.4.2.).

Предельное значение парциальной плотности СO 2 на уровне рабочей зоны равно 0,11 кг/м 3 . При этом среднеобъемное значение плотности диоксида углерода будет равно:

Такого значения парциальная плотность СO 2 за время расчета не достигает (рисунок п.4.3).

Предельно допустимое значение теплового потока на путях эвакуации составляет 1400 Вт/м 2 . В первом приближении оценить значение плотности теплового потока на путях эвакуации можно по данным таблицы п.3.5.

Средняя плотность теплового потока на путях эвакуации достигает своего критического значения через 2,9 минуты от начала пожара (таблица п. 3.5).

Как видим, быстрее всего критического значения достигает температура газовой среды в помещении, следовательно, ф t = 2,4 мин.

Литература

1. Федеральный закон «Технический регламент о требованиях пожарной безопасности». 2008.

2. Методика определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности. Приложение к приказу МЧС России от 30.06.2009 № 382.

3. Методика определения расчетных величин пожарного риска на производственных объектах. Приложение к приказу МЧС России от 10.07.2009 № 404.

4. Пособие по определению пределов огнестойкости конструкций, пределов распространения огня по конструкциям и групп возгораемости материалов (к СНиП П-2-80). - М., 1985.

5. Пожарная безопасность зданий и сооружений. СНиП 21-01-97*.

6. Пузач С.В. Методы расчета тепломассообмена при пожаре в помещении и их применение при решении практических задач пожаровзрыво- безопасности. - М| Академия ГПС МЧС России, 2003.

7. Рыжов A.M., Хасанов И.Р., Карпов А.В. и др. Применение полевого метода математического моделирования пожаров в помещениях. Методические рекомендации. - М.: ВНИИПО, 2003.

8. Определение времени эвакуации людей и огнестойкости строительных конструкций с учетом параметров реального пожара: Учебное пособие/ Пузач С.В., Казенное В.М., Горностаев Р.П. - М.: Академия ГПС МЧС России, 2005. 147 л.

9. Астапенко В.М., Кошмаров Ю.А., Молчадский И.С., Шевляков А.Н. Термогазодинамика пожаров в помещениях.- М.: Стройиздат, 1986.

10. Мосалков И.Л., Плюсина Г.Ф., Фролов А.Ю. Огнестойкость строительных конструкций. - М.: Спецтехника, 2001.

11. Кошмаров Ю.А. Прогнозирование опасных факторов пожара в помещении: Учебное пособие. - М.: Академия ГПС МВД России, 2000.

12. Драйздейл Д. Введение в динамику пожаров. - М., Стройиздат, 1988.

13. Яковлев А.И. Расчет огнестойкости строительных конструкций. - М.: Стройиздат, 1988.

14. Кошмаров Ю.А. Теплотехника: учебник для вузов. - М.: ИКЦ «Академкнига», 2006. - 501 е.: ил.

15. Задачник по термодинамике и теплопередаче./ Под ред. Кошмарова Ю.А. Часть 3 - М.: Академия ГПС МВД РФ, 2001.

Размещено на Allbest.ru

...

Подобные документы

    Описание интегральной математической модели свободного развития пожара в помещении. Динамика опасных факторов пожара в помещении. Определение времени от начала пожара до блокирования эвакуационных путей опасными факторами пожара на примере канцелярии.

    курсовая работа , добавлен 16.02.2016

    Описание интегральной математической модели свободного развития пожара в складском помещении. Расчет динамики опасных факторов для уровня рабочей зоны с помощью компьютерной программы Intmodel. Расчет времени, необходимого для эвакуации из помещения.

    методичка , добавлен 09.06.2014

    Интегральная математическая модель развития пожара. Результаты компьютерного моделирования. Время достижения пороговых и критических значений опасных факторов. Расчет времени эвакуации людей из помещения. Расчет динамики ОФП для уровня рабочей зоны.

    курсовая работа , добавлен 24.08.2011

    Описание математической модели развития пожара в помещении. Прогнозирование обстановки на пожаре к моменту прибытия первых подразделений на его тушение. Определение критической продолжительности пожара и времени блокирования эвакуационных путей.

    курсовая работа , добавлен 21.11.2014

    Определение эвакуации как вынужденного вывода людей из зоны, в которой возможно воздействие на них опасных факторов пожара. Характеристика основных средств пожаротушения. Техника использования огнетушителей и их классификация на углекислотные и пенные.

    презентация , добавлен 12.11.2011

    Нормативно-правовая документация учебного учреждения с учетом требований пожарной безопасности. Определение расчётного времени эвакуации в школе. Исследование процесса возникновения пожара. Разработка мероприятий по повышению пожарной безопасности.

    курсовая работа , добавлен 22.06.2011

    Определение расчетного времени эвакуации людей при пожаре. Предварительное планирование боевых действий членов добровольных противопожарных формирований по тушению пожара первичными средствами пожаротушения в помещении. Определение площади зоны риска.

    курсовая работа , добавлен 12.04.2017

    Концентрации и действие летучих токсичных веществ, выделяющихся при пожаре. Влияние опасных факторов, удельный выход газов при горении. Задание и табличные данные для выполнения расчета времени эвакуации и степени опасности горючих веществ при пожаре.

    методичка , добавлен 27.01.2012

    Особенности возникновения пожаров на элеваторах. Оперативно-тактическая характеристика объекта (ККЗ ОАО "СК" Агроэнерго"). Характеристика здания, пути эвакуации людей. Установки пожаротушения и пожарной сигнализации. Определение параметров пожара.

    контрольная работа , добавлен 19.06.2012

    Расчет времени эвакуации от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара. Определение величин потенциального риска для работников, которые находятся в здании на территории объекта.

ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №3. «ГАЗООБМЕН ПОМЕЩЕНИИ И ТЕПЛОФИЗИЧЕСКИЕ ФУНКЦИИ, НЕОБХОДИМЫЕ ДЛЯ ОПИСАНИЯ

ЗАМКНУТОГО ПОЖАРА»

План лекции:

Лекция 1,2. ДОПОЛНИТЕЛЬНЫЕ УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА РАСХОДОВ УХОДЯЩИХ ГАЗОВ И ПОСТУПАЮЩЕГО ЧЕРЕЗ ПРОЕМЫ ВОЗДУХА

1.1. Введение

1.2. Распределение давлений по высоте помещения

1.3 Плоскость равных давлений и режимы работы проема

1.4. Распределение перепадов давлений по высоте помещения

1.5. Формулы для расчета расхода газа, выбрасываемого через прямоугольный проем

1.6. Формулы для расчета расхода воздуха, поступающего через прямоугольный проем

1.7. Влияние ветра на газообмен

Лекция 3,4. УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА ТЕПЛОВОГО ПОТОКА В ОГРАЖДЕНИЯ И СКОРОСТИ ВЫГОРАНИЯ ГОРЮЧИХ МАТЕРИАЛОВ

2.1 Приближенная оценка величины теплового потока в ограждения

2.2 Эмпирические методы расчета теплового потока в ограждения

2.3 Полуэмпирические методы расчета теплового потока в ограждения

2.4 Методы расчета скорости выгорания горючих материалов и скорости тепловыделения

Цели лекции:

1. Учебные

В результате прослушивания материала слушатели должны знать:

Интегральные уравнения для расчета параметров газообмена

Уравнения интегральной модели для определения тепловых потоков к конструкциям помещения при пожаре

Влияний внешних условий на тепло и газообмен при пожаре

Уметь: прогнозировать обстановку на пожаре с учетом теплогазообмена

2. Развивающие: выделять самое главное, самостоятельность и гибкости мышления, развитие познавательного мышления.

Литература

1. Д.М. Рожков Прогнозирование опасных факторов пожара в помещении. – Иркутск 2007. С.89

2. Ю.А.Кошмаров, М.П. Башкирцев Термодинамика и теплопередача в пожарном деле. ВИПТШ МВД СССР, М., 1987 г.

3. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118

4. Ю.А.Кошмаров, В.В. Рубцов, Процессы нарастания опасных факторов пожара в производственных помещениях и расчет критической продолжительности пожара. МИПБ МВД России, М., 1999 г.

ДОПОЛНИТЕЛЬНЫЕ УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ

МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА

РАСХОДОВ УХОДЯЩИХ ГАЗОВ И ПОСТУПАЮЩЕГО

ЧЕРЕЗ ПРОЕМЫ ВОЗДУХА

Введение

При пожаре происходит газообмен помещения с окружающей средой через проемы различного назначения (окна, двери, технологические отверстия и т.д.).

Побудителем движения газа через проемы является перепад давлений, т.е. разность между давлением внутри помещения и давлением в окружающей атмосфере. Перепад давлений обусловлен тем, что при пожаре плотность газовой среды внутри помещения существенно отличается от плотности наружного воздуха. Кроме того, необходимо учитывать влияние ветра на величину этого перепада. Дело в том, что наружное давление на наветренной стороне здания выше, чем наружное давление на подветренной стороне. Рассмотрим условия, когда ветер отсутствует.


САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ГПС МЧС РОССИИ ______________________________ _________________________

Кафедра Правового и Кадрового обеспечения

КОНТРОЛЬНАЯ РАБОТА

по курсу: «Физико-химические основы развития и тушения пожаров»

Тема: Исходные понятия и общие сведения об опасных факторах пожара и методах их прогнозирования.

                Выполнил: студент института заочного и дистанционного обучения Гр. № 508
                зачетная книжка № в-0876
                специальность 280104.65
Габдуллин Динар Дамирович

Санкт-Петербург
2011г.

Содержание
Введение………………………………………………………… ……………… 3стр.
Опасные факторы пожара ………………………………………… ………... 4стр.
Пламя как опасный фактор пожара…………………………………………… 4стр.
Искры как опасный фактор пожара…………………………………………… 4стр.
Повышенная температура как опасный фактор пожара……………………. 5стр.
Дым как опасный фактор пожара……………………………………………... 5стр.
Пониженная концентрация кислорода как опасный фактор пожара……….. 5стр.
Концентрация токсичных веществ как опасный фактор пожара…………... 5стр.
Разрушение конструкций как опасный фактор пожара…………………….. 6стр.
Отравление угарным газом как опасный фактор пожара…………………… 6стр.
Методы прогнозирования пожара ………………………………………….. 7стр.
Классификация интегральных математических моделей пожара…………... 7стр.
Интегральная модель пожара………………………………………………….. 9стр.
Зонная модель пожара…………………………………………………………. 9стр.
Полевой (дифференциальный) метод расчета……………………………….. 11стр
Критерии выбора моделей пожара для расчетов…………………………….. 12стр
Заключение…………………………………………………… ………………… 13стр
Список использованной литературы………………………………………….. 14стр

Введение

Изучение дисциплины «Прогнозирование опасных факторов пожара» направлена на теоретическую и практическую подготовку дипломированного специалиста, пожарной охраны, с целью проведения грамотного научно обоснованного прогнозирования динамики опасных факторов пожара (ОФП) в помещениях (зданиях, сооружениях), а также для проведения исследований реально произошедших пожаров при их экспертизе.
Цель данной работы – получение слушателями знаний и навыков по прогнозированию критических ситуаций, которые могут возникнуть в ходе пожара и использование этой информации для профилактики пожаров, обеспечения безопасности людей и личной безопасности при тушении пожаров, анализе причин и условий возникновения и развития пожаров.
По окончании изучения работы обучающиеся получат общие сведения об опасных факторах пожара, методах их прогнозирования, узнают физические закономерности распространения пламени и развитие пожара на объектах различного назначения.

Опасные факторы пожара

Пожар - неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

Опасные факторы пожара (ОФП), воздействие которых приводит к травме, отравлению или гибели человека, а также к материальному ущербу.

Опасными факторами пожара (ОФП), воздействующими на людей, являются: открытый огонь и искры; повышенная температура окружающей среды, предметов и т. п.; токсичные продукты горения, дым; пониженная концентрация кислорода; падающие части строительных конструкций, агрегатов, установок и т.п.

К основные опасным факторам пожара относятся : повышенная температура, задымление, изменение состава газовой среды, пламя, искры, токсичные продукты горения и термического разложения, пониженная концентрация кислорода. Величины параметров ОФП принято рассматривать прежде всего с точки зрения их вреда для здоровья и опасности для жизни человека при пожаре.

К вторичным проявлениям ОФП относятся: осколки, части разрушившихся аппаратов, агрегатов, установок, конструкций;
радиоактивные и токсичные вещества и материалы, выпавшие из разрушенных аппаратов, оборудования;
электрический ток, возникший в результате выноса напряжения на токопроводящие части конструкций и агрегатов;

Пламя как опасный фактор пожара

Пламя чаще всего поражает открытые участки тела. Очень опасны ожоги, получаемые от горящей одежды, которую трудно потушить и сбросить. Особенно легко воспламенятся одежда из синтетических тканей. Температурный порог жизнеспособности тканей человека составляет 45 °C.

Искры как опасный фактор пожара

Самое частое и, вместе с тем банальное - это когда «из искры возгорится пламя»: здесь враг виден, если можно так выразиться - в лицо. Маленькая искра, перерастающая в открытое пламя - и, как следствие, большие неприятности: лесные и степные пожары, пожары в сельскохозяйственных и промышленных постройках, административных зданиях, жилых помещениях, движимом имуществе. Как правило, огромные материальные убытки. Однако что касается людей, то открытый огонь на них редко воздействует, людей поражают преимущественно испускаемые пламенем лучистые потоки, поражающие открытые участки тела. Весьма опасны ожоги от горящей одежды, особенно из синтетических тканей, которая трудно тушится и так же трудно сбрасывается.

Повышенная температура как опасный фактор пожара

Следующий фактор пожара - повышенная температура окружающей среды - может как усугубить действие предыдущего, так и выступить самостоятельным источником материальных убытков и физических страданий людей, вызванных пожаром от самовозгорающихся предметов и материалов. Наибольшая опасность для людей исходит от нагретого воздуха, который при вдыхании, обжигает верхние дыхательные пути и приводит к удушью и смерти. К летальному исходу приводит и вызванный этим фактором пожара перегрев, из-за чего из организма интенсивно выводятся соли, нарушается деятельность сосудов и сердца. Достаточно побыть несколько минут в среде с температурой в 100 °С - как сразу же теряется сознание и наступает смерть. Вместе с тем, губительное влияние на человека оказывает и продолжительное облучение инфракрасными лучами с интенсивностью около 540 Вт/м. Также при повышенной температуре окружающей среды часты ожоги кожи.

Дым как опасный фактор пожара

Особо опасным фактором пожара является дым, которого, как известно, без огня не бывает. При этом основной вред в этом случае может исходить не так от огня, как от дыма, который буквально «косит» попавших в сферу его распространения. Вещества, которые входят в состав дыма, в зависимости от того, продуктами горения каких материалов они являются, могут быть настолько ядовитыми, что смерть тех, кто лишь сделал один глоток отравленной смеси, наступает практически мгновенно. А ещё вследствие задымления теряется видимость, что затрудняет процесс эвакуации людей, делает её неуправляемой, потому что движения в дыму становятся хаотичными, эвакуируемые перестают чётко видеть указатели выходов и сами эвакуационные выходы, тогда как успешная эвакуация при пожаре возможна лишь при беспрепятственном передвижении людей.

Пониженная концентрация кислорода как опасный фактор пожара

Пониженная концентрация кислорода всего лишь на 3 процента нарушает мозговую деятельность человека и оказывает ухудшающее воздействие на двигательные функции его организма и, во многих случаях, становится причиной смерти людей. Потому пониженную концентрацию кислорода в условиях пожара также относят к его особо опасным факторам.

Концентрация токсичных веществ как опасный фактор пожара

Также особо опасным фактором пожара является повышенная концентрация токсичных продуктов термического разложения и горения. Губительное воздействие пылающих, горячих, тлеющих, просто сверх допустимой меры нагретых полимерных и синтетических материалов всё в больших масштабах и разнообразиях отмечается в последнее время, когда на рынок строительных и отделочных изделий вышли сотни до этого не известных и никогда прежде не применявшихся материалов с не до конца изученными свойствами или не ко всякому использованию пригодные. Из токсичных продуктов горения наиболее опасными признан оксид углерода, который, вступая со скоростью в двести-триста раз большей, нежели кислород, в реакцию с гемоглобином крови, приводит организм к кислородному голоданию. Вследствие чего человек от нахлынувшего головокружения цепенеет, его охватывает равнодушие, депрессия, он становится безучастным к опасности, движения его раскоординируются, и в результате - остановка дыхания и смертельный исход.

Разрушение конструкций как опасный фактор пожара

Разрушение конструкций это еще один из опасных факторов пожара приводящих к травмам увечьям и гибели людей находящихся в зоне разрушения.
В первые 10-20 минут пожар распространяется вдоль горючего материала и в это время помещение заполняется дымом. Температура воздуха поднимается в помещении до 250-300 градусов. Через 20 минут начинается объёмное распространение пожара.
Спустя ещё 10 минут наступает разрушение остекления. Увеличивается приток свежего воздуха, резко прогрессирует развитие пожара и температура достигает 900 градусов.
После того, как выгорают основные вещества, конструкция здания теряет свою несущую способность и в это время происходит обрушение выгоревших конструкций.

Отравление угарным газом как опасный фактор пожара

Отравление угарным газом это одна из основных причин отравления или гибели людей на пожаре. При отравлении угарным газом возникает острое патологическое состояние, развивающееся в результате попадания угарного газа в организм человека, является опасным для жизни и здоровья, и без адекватной медицинской помощи может привести к летальному исходу.
Угарный газ попадает в атмосферный воздух при любых видах горения. Угарный газ активно связывается с гемоглобином, образуя карбоксигемоглобин, и блокирует передачу кислорода тканевым клеткам, что приводит к гипоксии гемического типа. Угарный газ также включается в окислительные реакции, нарушая биохимическое равновесие в тканях.

Методы прогнозирования пожара

Классификация интегральных математических моделей пожара

Современные научные методы прогнозирования Опасных Факторов Пожара основываются на математическом моделировании, т.е. на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещении в течение времени, а также изменение параметров состояния ограждающих конструкций этого помещения и различных элементов технологического оборудования.
Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара. Математические модели пожара в помещении условно делятся на три класса (три вида): интегральные, зонные, полевые (дифференциальные).
1. Интегральная модель пожара позволяет получить информацию, т.е. сделать прогноз, о средних значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять (соотносить) средние (т. е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма и т. д.
2. Зонная модель позволяет получить информацию о размерах характерных пространственных зон, возникающих при пожаре в помещении, и средних параметров состояния среды в этих зонах. В качестве характерных пространственных зон можно выделить, например, припотолочную область пространства, в начальной стадии пожара, область восходящего над очагом горения потока нагретых газов и область незадымленной холодной части пространства.
3. Полевая дифференциальная модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения.
Перечисленные модели отличаются друг от друга объемом той информации, которую они могут дать о состоянии газовой среды в помещении и взаимодействующих с нею конструкций на разных этапах (стадиях) пожара. В этом отношении наиболее детальные сведения можно получить с помощью полевой модели.
В математическом отношении три вышеназванных вида моделей пожара характеризуются разным уровнем сложности.
Интегральная модель пожара в своей основе представлена системой обыкновенных дифференциальных уравнений. Искомыми функциями выступают среднеобъемные параметры состояния среды, независимым аргументом является время.
Основу зонной модели пожара в общем случае составляет совокупность нескольких систем обыкновенных дифференциальных уравнений. Параметры состояния среды в каждой зоне являются искомыми функциями, а независимым аргументом является время. Искомыми функциями являются также координаты, определяющие положение границ характерных зон.
Наиболее сложной в математическом отношении является полевая модель. Ее основу составляет система уравнений в частных производных, описывающих пространственно-временное распределение температур и скоростей газовой среды в помещении, концентраций компонентов этой среды (кислород, оксид и диоксид углерода и т.д.), давлений и плотностей. Эти уравнения включают реологический закон Стокса, закон теплопроводности Фурье, закон диффузии, закон радиационного переноса и т.п. В более общем случае к этой системе уравнений добавляется дифференциальное уравнение теплопроводности, описывающее процесс нагревания ограждающих конструкций. Искомыми функциями в этой модели являются плотность и температура среды, скорость движения газа, концентрации компонентов газовой среды, оптическая плотность дыма (натуральный показатель ослабления света в дисперсной среде) и т.д. Независимыми аргументами являются координаты х, у, z и время т.

Для прогнозирования опасных факторов пожара в настоящее время используются интегральные (прогноз средних значений параметров состояния среды в помещении для любого момента развития пожара), зонные (прогноз размеров характерных пространственных зон, возникающих при пожаре в помещении и средних значений параметров состояния среды в этих зонах для любого момента развития пожара. Примеры зон – припотолочная область, восходящий на очагом горения поток нагретых газов и область незадымленной холодной зоны) и полевые (дифференциальные) модели пожара (прогноз пространственно-временного распределения температур и скоростей газовой среды в помещении, концентраций компонентов среды, давлений и плотностей в любой точке помещения).

Для проведения расчетов, необходимо проанализировать следующие данные:
- объемно-планировочных решений объекта;
- теплофизических характеристик ограждающих конструкций и размещенного на объекте оборудования;
- вида, количества и расположения горючих материалов;
- количества и вероятного расположения людей в здании;
- материальной и социальной значимости объекта;
- систем обнаружения и тушения пожара, противодымной защиты и огнезащиты, системы обеспечения безопасности людей.
При этом учитывается:
- вероятность возникновения пожара;
- возможная динамика развития пожара;
- наличие и характеристики систем противопожарной защиты (СППЗ);
- вероятность и возможные последствия воздействия пожара на людей, конструкцию здания и материальные ценности;
- соответствие объекта и его СППЗ требованиям противопожарных норм.

Далее необходимо обосновать сценарий развития пожара. Формулировка сценария развития пожара включает в себя следующие этапы:
- выбор места расположения первоначального очага пожара и закономерностей его развития;
- задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);
- задание параметров окружающей среды и начальных значений параметров внутри помещений.

Интегральная модель пожара

Интегральная математическая модель пожара описывает в самом общем виде процесс изменения во времени состояния газовой среды в помещении.
С позиций термодинамики газовая среда, заполняющая помещение с проемами (окна, двери и т.п.), как объект исследования есть открытая термодинамическая система. Ограждающие конструкции (пол, потолок, стены) и наружный воздух (атмосфера) является внешней средой по отношению в этой термодинамической системе. Эта система взаимодействует с внешней средой путем тепло- и массообмена. В процессе развития пожара через одни проемы выталкивается из помещения нагретые газы, а через другие поступает холодных воздух. Количество вещества, т.е. масса газа в рассматриваемой термодинамической системе, в течении времени изменяется. Поступление холодного воздуха обусловлено работой проталкивания, которую совершает внешняя среда. Термогазодинамическая система в свою очередь совершает работу, выталкивая нагретые газы во внешнюю атмосферу. Эта термодинамическая система взаимодействует также с ограждающими конструкциями путем теплообмена. Кроме того, в эту систему с поверхности горящего материала (т.е. из пламенной зоны) поступает вещество в виде газообразных продуктов горения.
Состояние рассматриваемой термодинамической системы изменяется в результате взаимодействия с окружающей средой. В интегральном методе описания состояния термодинамической системы, коей является газовая среда в помещении, используются «интегральные» параметры состояния – такие, как масса всей газовой среды и ее внутренняя тепловая энергия. Отношение этих двух интегральных параметров позволяет оценивать в среднем степень нагретости газовой среды. В процесс развития пожара, значения указанных интегральных параметров состояния изменяются.

Зонная модель пожара

Зонный метод расчета динамики ОФП основан на фундаментальных законах природы – законах сохранения массы, импульса и энергии. Газовая среда помещений является открытой термодинамической системой, обменивающейся массой и энергией с окружающей средой через открытые проемы в ограждающих конструкциях помещения. Газовая среда является многофазной, т.к. состоит из смеси газов (кислород, азот, продукты горения и газификация горючего материала, газообразное огнетушащие вещество) и мелкодисперсных частиц (твердых или жидких) дыма и огнетушащих веществ.
В зонной математической модели газовый объем помещения разбивается на характерных зоны, в которых для описания тепломассобмена используются соответствующие уравнения законов сохранения. Размеры и количество зон выбирается таким образом, что бы в пределах каждой из них неоднородность температурных и других полей параметров газовой среды были возможно минимальными, или из каких-то других предположений, определяемых задачами исследования и расположением горючего материала.
Наиболее распространенной является трехзонная модель, в которой объем помещения разбит на следующие зоны: конвективная колонка, припотолочный слой и зона холодного воздуха, рис. 1.

Рисунок 1

В результате расчета по зонной модели находятся зависимости от времени следующих параметров тепломассообмена:
- среднеобъемных значений температуры, давления, массовых концентраций кислорода, азота, огнетушащего газа и продуктов горения, а также оптической плотности дыма и дальности видимости в нагретом задымленном припотолочном слое в помещении;
- нижнюю границу нагретого задымленного припотолочного слоя;
- распределение по высоте колонки массового расхода, осредненных по поперечному сечению колонки величин температуры и эффективной степени черноты газовой смеси;
- массовых расходов истечения газов наружу и притока наружного воздуха внутрь через открытые проемы;
- тепловых потоков, отводящих в потолок, стены и пол, а также излучаемых через проемы;
- температуры (температурных полей) ограждающих конструкций.

Полевой (дифференциальный) метод расчета

Полевой метод является наиболее универсальным из существующих детерминистических методов, поскольку он основан на решении уравнений в частных производных, выражающих фундаментальные законы сохранения в каждой точке расчетной области. С его помощью можно рассчитать температуру, скорость, скорость, концентрации компонентов смеси и т.п.в каждой точки расчетной области, см. рис. 2. В связи с этим полевой метод может использоваться:
для проведения научных исследований в целях выявления закономерностей развития пожара;
для проведения сравнительных расчетов в целях апробации и совершенствования менее универсальных и зональных и интегральных моделей, проверки обоснованности и их применения;
Выбора рационального варианта противопожарной защиты конкретных объектов:
моделирования распространения пожара в помещениях высотой более 6м.

Рисунок 2

В своей основе полевой метод не содержит никаких априорных допущений о структуре течения, и связи с этим принципиально применим для рассмотрения любого сценарий развития пожара.
Вместе с тем, следует отметить, что его использование требует значительных вычислительных ресурсов. Это накладывает ряд ограничений на размеры рассматриваемой системы и снижает возможность проведения многовариантных расчетов. Поэтому, интегральный и зональный методы моделирования также являются важным инструментами в оценке пожарной опасности объектов в тех случаях, когда они обладают достаточной информативностью и сделанные при их формулировке допущения не противоречат картине развития пожара.
Однако, на основе проведенных исследований, можно утверждать, что поскольку априорные допущения зонных моделей могут приводить к существенным ошибкам при оценке пожарной опасности объекта, предпочтительно использовать полевой метод моделирования в следующих случаях:
для помещений сложной геометрической конфигурации, а также для помещений с большим количеством внутренних преград;
помещений, в которых один из геометрических размеров гораздо больше остальных;
помещений, где существует вероятность образования рециркуляционных течений без формирования верхнего прогретого слоя (что является основным допущением классических зонных моделей);
в иных случаях, когда зонные и интегральные модели являются недостаточно информативными для решения поставленных задач, либо есть основании считать, что развитие пожара может существенно отличаться от априорных допущений зональных и интегральных моделей пожара.

Критерии выбора моделей пожара для расчетов

В соответствии с проектом документа «Методика оценки рисков для общественных зданий» для описания термогазодинамических параметров пожара применяются три основных группы детерминистических моделей: интегральные, зонные (зональные) и полевые.
Выбор конкретной модели расчета времени блокирования путей эвакуации следует осуществлять исходя из следующих предпосылок:
интегральный метод:

    для зданий и сооружений, содержащих развитую систему помещений малого объема простой геометрической конфигурации
    проведении имитационного моделирования для случаев, когда учет стохастического характера пожара является более важным, чем точное и детальное прогнозирование его характеристик;
    для помещений, где характерный размер очага пожара соизмерим с характерным размером помещения;
зональный метод:
    для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой;
    для помещений большого объема, когда размер очага пожара существенно меньше размеров помещения;
    для рабочих зон, расположенных на разных уровнях в пределах одного помещения (наклонный зрительный зал кинотеатра, антресоли и т.д);
полевой метод:
- для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (атриумы с системой галерей и примыкающих коридоров, многофункциональные центры со сложной системой вертикальных и горизонтальных связей и т.д.);
- для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые автостоянки большой площади и.т.д.);
и т.д.................

МЧС РОССИИ

Федеральное Государственное бюджетное образовательное

учреждение высшего профессионального образования

«Уральский институт Государственной противопожарной службы

Министерства Российской Федерации по делам гражданской обороны,

чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»

Кафедра физики и теплообмена

КУРСОВАЯ РАБОТА

Тема: Прогнозирование опасных факторов пожара в складском помещении

Вариант №35

Выполнил:

слушатель учебной группы З-461

старший лейтенант внутренней службы Иванов И.И.

Проверил:

старший преподаватель кафедры

физики и теплообмена, к.п.н., капитан внутренней службы

Субачева А.А.

Екатеринбург

на выполнение курсовой работы

по дисциплине «Прогнозирование опасных факторов пожара»

Слушатель Иванов Иван Иванович

Вариант №35 Курс 4 Группа З-461

Наименование объекта: склад хлопка в тюках

Исходные данные

Блок атмосфера

давление, мм. рт. ст.

температура, 0 С

Блок помещение

высота, м

ширина, м

температура, 0 С

проем 1 - штатный (дверь)

нижний срез, м

Ширина, м

верхний срез, м

вскрытие, 0 С

проем 2 - штатный (окна)

Ширина, м

нижний срез, м

вскрытие, 0 С

верхний срез, м

вид горючего материала

хлопок в тюках

дымовыделение Нп*м 2 /кг

выделение СО, кг/кг

ширина, м

выделение СО 2 , кг/кг

количество ГН, кг

удельная скорость выгорания, кг/м 2 *с

выделение тепла МДж/кг

скорость распространения пламени, м/с

потребление кислорода кг/кг

Срок сдачи: «____»__________

Слушатель____________________ Руководитель_______________

1. Исходные данные

Помещение пожара расположено в одноэтажном здании. Здание построено из сборных железобетонных конструкций и кирпича. В здании наряду с помещением склада находятся два рабочих кабинета. Оба помещения отделены от склада противопожарной стеной. План объекта приведен на рисунке 1.

(Требуется проставить на схеме размеры помещения и расчетную массу горючей нагрузки согласно своему варианту!)

Рис. 1. План здания

Размеры склада:

длина l 1 = 60 м;

ширина l 2 = 24 м;

высота 2h = 6 м.

В наружных стенах помещения склада имеется 10 одинаковых оконных проемов. Расстояние от пола до нижнего края каждого оконного проема Y H = 1,2 м. Расстояние от пола до верхнего края проема Y B = 2,4 м. Суммарная ширина оконных проемов = 24 м. Остекление оконных проемов выполнено из обычного стекла. Остекление разрушается при среднеобъемной температуре газовой среды в помещении, равной 300°С.

Помещение склада отделено от рабочих кабинетов противопожарными дверьми, ширина и высота которых 3 м. При пожаре эти проемы закрыты. Помещение склада имеет один дверной проем, соединяющий его с наружной средой. Ширина проема равна 3,6 м. Расстояние от пола до верхнего края дверного проема Y в = 3, Y н =0. При пожаре этот дверной проем открыт, т.е. температура вскрытия 20 0 C.

Полы бетонные, с асфальтовым покрытием.

Горючий материал представляет собой хлопок в тюках. Доля площади, занятая горючей нагрузкой (ГН) = 30%.

Площадь пола, занятая ГН, находится по формуле:

где? площадь пола.

Количество горючего материала на 1 Р 0 = 10. Общая масса горючего материала.

Горение начинается в центре прямоугольной площадки, которую занимает ГМ. Размеры этой площадки:

Свойства ГН характеризуются следующими величинами:

теплота сгорания Q = 16,7 ;

выделение оксида углерода = 0,0052 .

Механическая вентиляция в помещениях отсутствует. Естественная вентиляция осуществляется через дверные и оконные проемы.

Отопление центральное водяное.

Внешние атмосферные условия:

ветер отсутствует, температура наружного воздуха 20 0 C = 293 К

давление (на уровне Y=h) Р а = 760 мм. рт. ст., т.е. = 101300 Па.

Параметры состояния газовой среды внутри помещения перед пожаром :

Т = 293 К (согласно выбранному варианту);

Р = 101300 Па;

Другие параметры:

критическая температура для остекления? 300 о С;

материал ограждающих конструкций - железобетон и кирпич;

температура воздуха в помещении - 20 о С;

автоматическая система пожаротушения? отсутствует;

противодымная механическая вентиляция? отсутствует.

2. Описание интегральной математической модели свободного развития пожара в складском помещении

Интегральная математическая модель пожара в помещении разработана на основе уравнений пожара, изложенных в работах . Эти уравнения вытекают из основных законов физики: закона сохранения вещества и первого закона термодинамики для открытой системы и включают в себя:

уравнение материального баланса газовой среды в помещении:

V(dс m /dф) = G B + ш - G r , (1)

где V - объем помещения, м 3 ; с m - среднеобъемная плотность газовой среды кг/м 3 ; ф - время, с; G B и G r - массовые расходы поступающего в помещение воздуха и уходящих из помещения газов, кг/с; ш - массовая скорость выгорания горючей нагрузки, кг/с;

уравнение баланса кислорода:

Vd(p 1)/dф = x 1в G B - x 1 n 1 G r - ш L 1 Ю, (2)

где x 1 - среднеобъемная массовая концентрация кислорода в помещении; х 1в - концентрация кислорода в уходящих газах; n 1 - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах х 1г от среднеобъёмного значения x 1 , n 1 = х 1г /x 1 ; L 1 - скорость потребления кислорода при горении, p 1 - парциальная плотность кислорода в помещении;

уравнение баланса продуктов горения:

Vd(p 2)/dф = ш L 2 Ю - x 2 n 2 G r , (3)

где X i - среднеобъемная концентрация i-гo продукта горения; L i - скорость выделения i-гo продукта горения (СО, СО2); n i - коэффициент, учитывающий отличие концентрации i-гo продукта в уходящих газах x iг от среднеобъёмного значения x i , n i = x iг /х i ; р 2 - парциальная плотность продуктов горения в помещении;

уравнение баланса оптического количества дыма в помещении:

Vd ()/d =Dш - n 4 G r / р m - к c S w , (4)

где - среднеобъемная оптическая плотность дыма; D - дымообразующая способность ГМ; n 4 - коэффициент, учитывающий отличие концентрации дыма в уходящих из помещения нагретых газах от среднеобъемной оптической концентрации дыма, n4= м mг /м m ;

уравнение баланса энергии U:

dU/dф = Q p н ш + i г ш + С рв Т в G в - С р Т m m G r - Q w , (5)

где P m - среднеобъемное давление в помещении, Па; С рm , Т m - среднеобъемные значения изобарной теплоемкости и температуры в помещении; Q p н - низшая рабочая теплота сгорания ГН, Дж/кг; С рв, Т в - изобарная теплоемкость и температура поступающего воздуха, К; i г - энтальпия газификации продуктов горения ГН, Дж/кг; m - коэффициент, учитывающий отличие температуры Т и изобарной теплоемкости С рг уходящих газов от среднеобъемной температуры Т m и среднеобъемной изобарной теплоемкости С рm ,

m = С рг Т г /С рm Т m ;

Ю - коэффициент полноты сгорания ГН; Q w - тепловой поток в ограждение, Вт.

Среднеобъемная температура Т m связана со среднеобъёмным давлением Р m и плотностью р m уравнением состояния газовой среды в помещении:

P m = с m R m T m . (6)

Уравнение материального баланса пожара с учетом работы приточно-вытяжной системы механической вентиляции, а так же с учетом работы системы объемного тушения пожара инертным газом примет следующий вид:

VdP m / dф = ш + G B - G r + G пр - G выт + G ов, (7)

Вышеуказанная система уравнений решается численными методами с помощью компьютерной программы. Примером может служить программа INTMODEL.

3. Расчет динамики ОФП с помощью компьютерной программы INTMODEL

Результаты компьютерного моделирования

Учебная компьютерная программа INTMODEL реализует описанную выше математическую модель пожара и предназначена для расчета динамики развития пожара жидких и твердых горючих веществ и материалов в помещении. Программа позволяет учитывать вскрытие проемов, работу систем механической вентиляции и объемного тушения пожара инертным газом, а также учитывает кислородный баланс пожара, позволяет рассчитывать концентрацию оксидов углерода СО и СО 2 , задымленность помещения и дальность видимости в нем.

Таблица 1. Динамика развития параметров газовой среды в помещении и координат ПРД

Вpемя, мин

Температура

Оптическая плотность дыма

Дальность видимости

Нейтральная плоскость - ПРД Y*, м

Изменение среднеобъемных параметров газовой среды во времени


Рис. 2.

Описание графика: Рост температуры в первые 22 минуты пожара можно объяснить горением в режиме ПРН, что обусловлено достаточным содержанием кислорода в помещении. С 23 минуты пожар переходит в режим ПРВ в связи со значительным снижением концентрации кислорода. С 23 минуты по 50 минуту интенсивность горения постоянно снижается, несмотря на продолжающееся возрастание площади горения. Начиная с 50 минуты, пожар снова переходит в режим ПРН, что связано с увеличением концентрации кислорода в результате выгорания горючей нагрузки.

Выводы по графику: На графике температуры можно условно выделить 3 стадии развития пожара. Первая стадия - нарастание температуры (приблизительно до 22 мин.), вторая - квазистационарная стадия (с 23 мин. до 50 мин.), и третья - стадия затухания (с 50 мин. до полного выгорания горючей нагрузки).


Рис. 3.

Описание графика: В начальной стадии пожара выделение дыма незначительно, полнота сгорания максимальна. В основном дым начинает выделяться после 22 минуты от начала возгорания, а превышение ПДЗ по среднеобъемному значению плотности дыма произойдет примерно на 34 минуте. Начиная с 52 минуты, с переходом в режим затухания, задымление уменьшается.

Выводы по графику: Выделение значительных количеств дыма началось только с переходом пожара в режим ПРВ. Опасность снижения видимости в дыму в данном помещении невелика - ПДЗ будет превышено ориентировочно только после 34 минут от начала возгорания, что так же можно объяснить наличием в помещении открытых проемов большого размера (дверь).


Рис. 4.

Описание графика: На протяжении 26 минут развития пожара дальность видимости в горящем помещении остается удовлетворительной. С переходом в режим ПРВ видимость в горящем помещении быстро ухудшается.

Выводы по графику: Дальность видимости связана с оптической плотностью дыма соотношением. То есть дальность видимости обратно пропорциональна оптической плотности дыма, поэтому при увеличении задымления дальность видимости уменьшается и наоборот.


Рис. 5.

Описание графика: В первые 9 минут развития пожара (начальная стадия) среднеобъемная концентрация кислорода почти не изменяется, т.е. потребление кислорода пламенем низкое, что может быть объяснено малыми размерами очага горения в это время. По мере увеличения площади горения содержание кислорода в помещении снижается. Примерно с 25 минуты от начала горения содержание кислорода стабилизируется на уровне 10-12 масс.% и остается почти неизменным примерно до 49-й минуты пожара. Таким образом, с 25-й по 49-ю минуту в помещении реализуется режим ПРВ, т.е. горение в условиях недостатка кислорода. Начиная с 50-й минуты содержание кислорода увеличивается, что соответствует стадии затухания, при которой поступающий воздух снова постепенно заполняет помещение.


Выводы по графику: график концентрации кислорода, аналогично графику температуры, позволяет выявить моменты смены режимов и стадий горения. Момент превышения ПДЗ по кислороду на данном графике отследить нельзя, для этого понадобится пересчитать массовую долю кислорода в его парциальную плотность, используя значение среднеобъемной плотности газа и формулу .

Рис. 6.

Описание графика: сделать описание и выводы по графикам по аналогии с вышеприведенными.

Выводы по графику:


Рис. 7. Изменение среднеобъемной концентрации СО 2 во времени

Описание графика:

Выводы по графику:

Рис. 8. Изменение среднеобъемной плотности газовой среды во времени

Описание графика:

Выводы по графику:

Рис. 9. Изменение положения плоскости равных давлений во времени

Описание графика:

Выводы по графику:

Рис. 10. Изменение притока свежего воздуха в помещение от времени развития пожара

Описание графика:

Выводы по графику:

Рис. 11. Изменение оттока нагретых газов из помещения от времени развития пожара

Описание графика:

Выводы по графику:

Рис. 12. Изменение разности давлений во времени

Описание графика:

Выводы по графику:







Рис. 13.

Описание графика:

Выводы по графику:

Описание обстановки на пожаре в момент времени 11 минут

Согласно п. 1 ст. 76 ФЗ-123 «Технический регламент о требованиях пожарной безопасности», время прибытия первого подразделения пожарной охраны к месту вызова в городских поселениях и городских округах не должно превышать 10 минут. Таким образом, описание обстановки на пожаре проводится на 11 минуту от начала пожара.

В начальные моменты времени при свободном развитии пожара параметры газовой среды в помещении достигают следующих значений:

Достигается температура 97°С (переходит пороговое значение 70°C);

Дальность видимости практически не изменилась и составляет 64,62 м, т.е. еще не переходит пороговое значение в 20 м;

Парциальная плотность газов составляет:

с= 0,208 кг/м 3 , что меньше предельной парциальной плотности по кислороду;

с= 0,005 кг/м 3 , что меньше предельной парциальной плотности по углекислому газу;

с= 0,4*10 -4 кг/м 3 , что меньше предельной парциальной плотности по угарному газу;

ПРД будет находиться на уровне 0,91 м;

Площадь горения составит 24,17 м 2 .

Таким образом, расчеты показали, что на 11 минуту свободного развития пожара, следующие ОФП достигнут своего предельно допустимого значения: среднеобъемная температура газовой среды (на 10 минуте).

4. Время достижения пороговых и критических значений ОФП

Согласно ФЗ-123 «Технический регламент о требованиях пожарной безопасности», необходимым временем эвакуации считается минимальное время достижения одним из опасных факторов пожара своего критического значения.

Необходимое время эвакуации из помещения по данным математического моделирования

Таблица 2. Время достижения пороговых значений

Пороговые значения

Время достижения, мин

Предельная температура газовой среды t = 70°C

Критическая дальность видимости 1 кр = 20 м

Предельно допустимая парциальная плотность кислорода с = 0,226 кг/м 3

Предельно допустимая парциальная плотность двуокиси углерода (с) пред = (с) пред = 0,11 кг/м 3

не достигается

Предельно допустимая парциальная плотность оксида углерода (с) пред = (с) пред = 1,16*10 -3 кг/м 3

не достигается

Максимальная среднеобъемная температура газовой среды Т m = 237 + 273 = 510 К

Критическая температура для остекления t = 300°C

не достигается

Пороговая температура для тепловых извещателей

ИП-101-1А t пopor = 70°C

В данном случае минимальным временем для эвакуации из помещения склада является время достижения предельной температуры газовой среды, равное 10 мин.

Вывод:

а) охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий и в целом описать прогноз развития пожара;

b) сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении (см. п. 8 таблица 2). В случае неэффективной работы пожарных извещателей предложить им альтернативу (приложение 3).

Определение времени от начала пожара до блокирования эвакуационных путей опасными факторами пожара

Рассчитаем необходимое время эвакуации для помещения с размерами 60·24·6, пожарной нагрузкой в котором является хлопок в тюках. Начальная температура в помещении 20°С.

Исходные данные:

помещение

свободный объем

безразмерный параметр

температура t 0 = 20 0 С;

вид горючего материала - хлопок в тюках - ТГМ, n=3;

теплота сгорания Q = 16,7 ;

удельная скорость выгорания = 0,0167 ;

скорость распространения пламени по поверхности ГМ;

дымообразующая способность D = 0,6 ;

потребление кислорода = 1,15 ;

выделение диоксида углерода = 0,578 ;

выделение оксида углерода = 0,0052 ;

полнота сгорания ГМ;

другие параметры

коэффициент отражения б = 0,3;

начальная освещенность Е = 50 Лк;

удельная изобарная теплоемкость С р = 1,003?10 -3 МДж/кг?К;

предельная дальность видимости =20 м;

предельные значения концентрации токсичных газов:

0,11 кг/м 3 ;

1,16?10 -3 кг/м 3 ;

Расчет вспомогательных параметров

А = 1,05?? = 1,05?0,0167? (0,0042) 2 = 3,093?10 -7 кг/с 3

В = 353?С р?V/(1-) ??Q = 353?1,003?10 -3 ?6912/(1-0.6)?0,97?16,7 = 377,6 кг

В/А = 377,69/3,093?10 -7 = 1,22?10 9 c 3

Расчет времени наступления ПДЗ ОФП:

1) по повышенной температуре:

2) по потере видимости:

3) по пониженному содержанию кислорода:


4) по углекислому газу СО 2

под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

5) по угарному газу СО

под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

Критическая продолжительность пожара:

кр = min = 746; 772; = 746 с.

Критическая продолжительность пожара обусловлена временем наступления предельно допустимого значения температуры в помещении.

Необходимое время эвакуации людей из складского помещения:

нв = 0,8* кр /60 = 0,8*746/60 = 9,94 мин.

Сделать заключение о достаточности / недостаточности времени на эвакуацию по данным расчета.

Вывод: сравнить необходимое время эвакуации, полученное различными методами, и, при необходимости, объяснить различия в результатах.

5. Расчет динамики ОФП для уровня рабочей зоны. Анализ обстановки на пожаре на момент времени 11 минут

Уровень рабочей зоны согласно ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования» принимается равным 1,7 метра.

Связь между локальными и среднеобъемными значениями ОФП по высоте помещения имеет следующий вид:

(ОФП? ОФП о) = (ОФП? ОФП о)·Z,

где ОФП? локальное (пороговое) значение ОФП;

ОФП о? начальное значение ОФП;

ОФП? среднеобъемное значение опасного фактора;

Z ? безразмерный параметр, вычисленный по формуле (см. п. 4.2).

Таблица 3. Динамика развития ОФП на уровне рабочей зоны

Время, мин

Площадь пожара составляет 24,17 м.

Температура на уровне рабочей зоны составляет 52,4 0 С, что не достигает ПДЗ, равное 70 0 С.

Дальность видимости в помещении не изменилась и составляет

2,38/0,00042 = 5666 м.

Концентрация кислорода в норме: 22,513 масс%.

Парциальные плотности О 2 , СО и СО 2 на уровне рабочей зоны равны соответственно:

1,09948?22,513/100 = 0,247 кг/м 3 ;

1,09948?0,00211/100 = 2,3*10 -5 кг/м 3 ;

1,09948?0,22328/100 = 0,00245 кг/м 3 .

Таким образом, расчеты показали, что парциальная плотность кислорода находится выше ПДЗ, а токсичных газов - ниже.


Рис. 14.

На 11 минуте горения газообмен протекает со следующими показателями: приток холодного воздуха составляет 3,26 кг/с, а отток нагретых газов из помещения - 10,051 кг/с.

В верхней части дверного проема идет отток задымленных нагретых газов из помещения, плоскость равных давлений находится на уровне 1,251 м, что ниже уровня рабочей зоны.

Вывод: на основании результатов расчетов дать подробную характеристику оперативной обстановки на момент прибытия пожарных подразделений, предложить меры по проведению безопасной эвакуации людей.

Общий вывод по работе

Сделать общий вывод по работе, включающий:

а) краткое описание объекта;

b) общая характеристика динамики ОФП при свободном развитии пожара;

c) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d) анализ срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e) характеристика оперативной обстановки на момент прибытия пожарных подразделений, предложения по проведению безопасной эвакуации людей;

f) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

Случайные статьи

Вверх