Прогнозирование опасных факторов пожара тесты. Введение

Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях План лекции: Введение Опасные факторы пожара. Цели лекции: Учебные В результате прослушивания материала слушатели должны знать: опасные факторы пожара воздействующие на людей на конструкции и оборудование предельно допустимые значения ОФП методы прогнозирования ОФП Уметь: прогнозировать обстановку на пожаре.Кошмаров Прогнозирование опасных факторов пожара в помещении.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №1. «Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях»

План лекции:

  1. Введение
  2. Опасные факторы пожара. Предельно допустимые значения ОФП.
  3. Современные научные методы прогнозирования ОФП.

Цели лекции:

  1. Учебные

В результате прослушивания материала слушатели должны знать:

  • опасные факторы пожара, воздействующие на людей, на конструкции и оборудование
  • предельно допустимые значения ОФП
  • методы прогнозирования ОФП

Уметь: прогнозировать обстановку на пожаре.

  1. Развивающие:
  • выделять самое главное
  • самостоятельность и гибкости мышления
  • развитие познавательного мышления

Литература

  1. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118
  2. Лекция на тему: Состав и свойства продуктов горения. Лекарственные средства для медицинской защиты от токсичных продуктов горения. – Иркутск.
  3. Лабораторный практикум «Прогнозирование опасных факторов пожара». Ю.А.Кошмаров, Ю.С.Зотов. 1997 г.

1. Введение

Понятие модели является центральным в современной теории познания. Рассмотрим его несколько подробнее.

В процессе познавательной деятельности человека постепенно вырабатывается система представлений о тех или иных свойствах изучаемого объекта и их взаимосвязях. Эта система представлений закрепляется, фиксируется в виде описания объекта на обычном языке, в виде рисунка, схемы, графика, формулы, в виде макетов, механизмов, технических устройств. Все это обобщается в едином понятии "модель", а исследование объектов познания на их моделях называют моделированием.

Таким образом, модель- это специально создаваемый объект, на котором воспроизводятся вполне определенные характеристики реального исследуемого объекта с целью его изучения. Моделирование является важнейшим инструментом научной абстракции, позволяющим выделить, обосновать характеристики изучаемого реального объекта: свойства, взаимосвязи, структурные и функциональные параметры и др.

Метод моделирования как метод научного познания имеет историю, исчисляемую тысячелетиями. Его нельзя считать недавно открытым методом научного исследования. Однако только в середине XX в. само моделирование стало предметом как философских, так и специальных исследований. Объясняется это, в частности, тем, что метод моделирования переживает сейчас подлинную революцию, связанную с развитием, во-первых, теории подобия и, во-вторых, кибернетики и электронной вычислительной техники.

Именно эта революция и позволила специалистам в последние десятилетия приступить к созданию и активному использованию, прежде всего, в научных исследованиях, а затем и на практике различных моделей возникновения, развития и ликвидации пожаров. Поясним это утверждение только на двух примерах. Первый пример относится к так называемому материальному (физическому) моделированию, о котором подробнее будет сказано ниже. В первой половине XX в., когда начиналось интенсивное развитие авиастроения и кораблестроения, строительство крупных гидротехнических сооружений, связанное с этими процессами развитие металлургии и других отраслей промышленности, сложные инженерные расчеты приходилось проверять на моделях самолетов, кораблей, плотин и др. В результате возникла острая необходимость в развитии специфической теории физического моделирования. Так сформировалась теория подобия, зачатки которой тоже можно обнаружить задолго до нашего века.

Теория подобия — это учение об условиях подобия физических явлений, процессов и систем, которое опирается на учение о размерностях физических величин и положено в основу экспериментов с физическими моделями.

Физические явления, процессы и системы считаются подобными, если в сходственных точках пространства в сходственные моменты времени величины, характеризующие состояние системы, пропорциональны соответствующим величинам другой системы. Такими величинами являются так называемые критерии подобия — безразмерные числовые характеристики, составленные из размерных физических параметров, определяющих исследуемые физические явления. Равенство однотипных критериев подобия для двух физических процессов и систем — необходимое и достаточное условие их физического подобия. Предметом теории подобия является установление критериев подобия для различных физических явлений.

В интересующей нас области автором теории физического моделирования процессов теплопередачи и тепловых устройств явился наш соотечественник М.В. Кирпичев (1879-1955 гг.). Теория подобия в целом и его работы в частности послужили импульсом в использовании методов физического моделирования при изучении закономерностей динамики пожаров.

Итак, модель — это объект любой природы, который заменяет реальный исследуемый объект так, что его изучение дает новую информацию о реальном объекте. Естественно, модели выбираются таким образом, чтобы они были проще и удобнее для исследования, чем интересующие нас объекты (тем более, что существуют и такие объекты, которые вообще нельзя активно исследовать).

В зависимости от средств, с помощью которых реализованы модели, различают, прежде всего, материальное (предметное) и идеальное (абстрактное) моделирование.

Материальным называется моделирование, в котором исследование ведется на основе модели, воспроизводящей основные геометрические, физические, динамические и функциональные характеристики изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, при котором моделируемый объект и модель имеют одну и ту же физическую природу.

Идеальные модели связаны с использованием каких-либо символических схем (графических, логических, математических и др.).

Математические модели тоже имеют свою классификацию (и не одну). Нам удобно подразделить математические модели, во-первых, на аналитические и имитационные. В случае аналитических моделей исследуемый объект и его свойства описывают отношениями-функциями в явной или неявной форме (дифференциальными или интегральными уравнениями; операторами) таким образом, что становится возможным непосредственно с помощью соответствующего математического аппарата сделать необходимые выводы об изучаемом объекте и его свойствах.

Одной из первых и простейших аналитических моделей пожара была модель, отражающая зависимость температуры "стандартного" пожара от времени, используемая при испытании строительных конструкций на огнестойкость. Ее обычно называют стандартной кривой "температура-время" и задают либо в виде таблицы, либо в виде эмпирической формулы. В отечественной литературе ее часто записывают в виде:

T= Т 0 + 345lg(8τ + 1) ,

где τ — время, мин; Т 0 — начальная температура, °С; Т- текущая температура пожара, °С.

2. Опасные факторы пожара. Физические величины, характеризующие ОФП в количественном отношении.

В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

  • при разработке рекомендаций по обеспечению безопасной эвакуации людей при пожаре;
  • при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;
  • при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);
  • при оценке фактических пределов огнестойкости;
  • и для многих других целей.

Современные методы прогнозирования ОФП не только позволяют заглядывать в «будущее», но и дают возможность снова «увидеть» то, что уже когда-то произошло. Другими словами, теория прогнозирования позволяет воспроизвести восстановить картину развития реально произодшего пожара, т.е. «увидеть» прошлое. Это необходимо, например, при криминалистической или пожарно-технической экспертизе пожара.

Различают первичные и вторичные проявления ОФП.

Первичными опасными факторами, воздействующими на людей и материальные ценности (согласно ГОСТ 12.1.004-91), являются:

Пламя и искры;

Повышенная температура окружающей среды;

Токсичность продуктов горения и термического разложения;

Дым;

Пониженная концентрация кислорода.

Вторичными опасными факторами, воздействующими на людей и материальные ценности (согласно ГОСТ 12.1.004-91), являются:

Осколки, части разрушившихся аппаратов, агрегатов, устано в ок, констр у кций;

Радиоактивные и то к сич н ые вещества и материалы, вышедшие из разрушенных аппаратов и установок;

Электрический ток, возникший в результате выноса высокого н апряжен и я на токопроводящие части конструкций, аппаратов, а грегатов;

Опасные факторы взрыва по ГОСТ 12.1.010-76* , происшедшего вследствие пожара;

Огнетушащие вещества.

Основными факторами, характеризующими опасность взрыва, ГОСТ 12.1.010-76* «Взрывобезопасность общие требования» являются:

Максимальное давление и температура взрыва;

Скорость нарастания давления при взрыве;

Давление во фронте ударной волны;

Дробящие и фугасные свойства взрывоопасной среды.

Опасными и вредными факторами, воздействующими на работающих в результате взрыва, являются:

Ударная волна, во фронте которой давление превышает допустимое значение;

Пламя;

Обрушивающиеся конструкции, оборудование, коммуникации, здания и сооружения и их разлетающиеся части;

Образовавшиеся при взрыве и (или) выделившиеся из поврежденного оборудования вредные вещества, содержание которых в воздухе рабочей зоны превышает предельно допустимые концентрации.

С научных позиций опасные факторы пожара являются физическими понятиями и, следовательно каждый из них представлен в количественном отношении одной или несколькими физическими величинами. С этих позиций рассмотрим вышеперечисленные ОФП.

  1. Пламя – это видимая часть пространстве (пламенная зона), внутри которой протекает процесс окисления (горения) и происходит тепловыделение, а также генерируются токсичные газообразные продукты и поглощается забираемый из окружающего пространства кислород.

По отношению к объему помещения, заполненного газом, пламенную зону можно рассматривать, с одной стороны, как «генератор», тепловой энергии, поступающей в помещение, токсичных продуктов горения и мельчайших твердых частицы, ухудшающих видимость. С другой стороны, пламенная зона потребляет кислород из помещения.

В связи с выше сказанным содержание понятия «пламя» представлено в количественном отношении следующими величинами:

  • характерными размерами пламенной зоны (очага горения), например, площадью горения (площадью пожара) F Г , м 2 .
  • количеством сгорающего за единицу времени горючего материала (скоростью выгорания) ψ , кг . с -1
  • мощностью тепловыделения Q пож. = ψ . Q н р , где Q н р – теплота сгорания, Дж . кг -1
  • количеством генерирумых за единицу времени в пламенной зоне токсичных газов ψ . l i . кг . с -1 , где l i – количество токсичного газа образующегося при сгорании
  • количеством кислорода, потребляемого в зоне горения ψ . l Т . кг . с -1 , l Т – количество кислорода для сгорания единицы массы
  • оптическим количеством дыма, образующегося в очаге горения.
  1. Повышенная температура окружающей среды и температура среды, заполняющей помещение, является параметром состояния. Физическое состояние этого параметра рассматривалось по дисциплинам ТГиВ, ФХОР и ТП, он обозначается Т , если используется размерность Кельвин или t , если используется размерность градусы Цельсия.

Примеры:

  • температура окружающей среды при тушении газонефтяных пожаров
  • при тушении кабельных туннелей, галерей и др. замкнутых помещений.
  1. Токсичные продукты горения – этот фактор количественно характеризуется парциальный плоскостью (или концентрацией) каждого токсичного газа. Под токсичностью обычно понимают степень вредного воздействия химического вещества на живой организм (при горении полимерных материалов – высоко токсичные соединения, трудно предсказуемые классической химией и не всегда обнаруживаемые современными тех.средствами). В последнее время в печати – сведения о супертоксикантах – диоксинах. Эти ядовитые вещества могут образовываться при пожарах в кабельных туннелях, трансформаторах и на обычных городских свалках. Таким образом, широкий спектр токсичных продуктов горения и трудность установления свойств и состава компонентов парогазоаэрозольного комплекса, который мы просто и обычно называем дымом (Кабельный завод г.Шелехово). При нарушении транспортировки и передачи кислорода тканям развивается кислородная недостаточность (СО – угарный газ). Во время пожаров в зданиях, имеющих полимерные материалы, наибольшие содержания СО в дыме (1,3 – 5%) – эти концентрации намного больше смертельных (АЦИЗОЛ).
  2. Пониженная концентрация кислорода в помещении . Этот фактор количественно характеризуется значением парциальной плоскости кислорода р 1 или отношением ее к плоскости газовой среды в помещении, т.е.

Все вышеперечисленные величины – являются параметрами состояния среды, заполняющей помещение при пожаре. Начиная с возникновения пожара в процессе его развития эти параметры непрерывно изменяются во времени, т.е. Т = Х(τ)

5. Дым — устойчивая дисперсная система, состоящая из мелких твёрдых частиц, находящихся во взвешенном состоянии в газах. Дым — типичный аэрозоль с размерами твёрдых частиц от 10 -7 до 10 -5 м. В отличие от пыли — более грубодисперсной системы, частицы дыма практически не оседают под действием силы тяжести. Частицы дыма могут служить. Процесс образования дисперсной среды, ухудшающей видимость, принято называть процессом дымообразования.

Совокупность этих зависимостей составляет суть динамики ОФП.

При рассмотрении воздействия ОФП на людей используются так называемые предельно допустимые значения (ПДЗ) параметров состояния среды в зоне пребывания людей. ПДЗ ОФП получены в результате обширных медико-биологических исследований, в процессе которых установлен характер воздействия ОФП на людей, в зависимости от значений их количественных характеристик.

Так, например, установлено, что если концентрация кислорода уменьшается вдвое по сравнению с нормальной концентрацией его в воздухе (составляет 23% т.е. приблизительно 270 г. О 2 в м 3 воздуха) , т.е. будет составлять 135 г О 2 в м 3 воздуха, то нарушается деятельность сердечно-сосудистой системы и органов дыхания человека, а также он теряет способность реальной оценки событий. При уменьшении концентрации кислорода в 3 раза – останавливается дыхание и через 5 минут останавливается работа сердца (Руководство по борьбе за живучесть подводной лодки)

Следует отметить, что в условиях пожара имеет место одновременное воздействие на человека всех ОФП. Вследствие этого опасность многократно увеличивается. Предельно допустимые значения ОФП указаны в ГОСТ 12.1.004-91.

Далее рассмотрим воздействие ОФП на элементы конструкций и оборудование термическое воздействие пожара на них. Например, при оценке воздействия пожара на железобетонные конструкции применяется понятие критического значения температуры арматуры этих конструкций. Обычно считается, что при нагревании арматуры до температуры, равный 400-450 0 С, происходит разрушение железобетонной конструкции.

Следующее, металла открытой металлической конструкции (л.марта, регилей кран.балки и т.д.) – при температуре 900 0 С через 15 минут.

При оценке воздействия пожара на остекление предполагается, что при температуре газовой среды в помещении, равной 300-350 0 С будет происходить разрушение остекления.

А скорость роста температуры в кабельных помещениях (условно и в подвалах) по опытным данным составляет в среднем 35-50 0 в минуту.

3. Современные научные методы прогнозирования ОФП.

Современные научные методы прогнозирования ОФП основываются на математическом моделировании, т.е. на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещениях в течение суток, а также изменение параметров состояния ограждающих конструкций и оборудования.

Основные уравнения, из которых состоит математическая модель пожара, вытекает из фундаментальных законов природы – первого закона термодинамики, закона сохранения массы и закона импульса.

Эти уравнения отражают и увязывают всю совокупность взаимосвязанных процессов, присущих пожару, таких как тепловыделение в результате горения, дымовыделения в пламенной зоне, выделение и распространение токсичных газов, газообмен помещений с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций, снижение концентрации кислорода в помещении.

Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара и делятся на три класса (три вида) : интегральные, зонные, полевые (дифференциальные).

Интегральная модель пожара позволяет получить информацию, т.е. сделать прогноз, о средних значениях параметров состояния среды в помещении для любого момента развития пожара.

Зонная модель позволяет получить информацию о размерах характерных зон, возникающих при пожаре в помещениях и средних параметров состояния среды в этих зонах.

Полевая дифференциальная модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения.

Перечисленные модели отличаются друг от друга объемом той информации, которую они могут дать о состоянии газовой среды в помещении и взаимодействующих с нею конструкций на разных этапах пожара.

В математическом отношении три вышеуказанных вида моделей пожара характеризуются разным уровнем сложности. Наиболее сложной в математическом отношении является полевая модель.

Вывод по лекции: Следует подчеркнуть, что основные дифференциальные уравнения всех названных математических моделей пожара вытекают из неопровержимых фундаментальных законов природы.

PAGE 8

Другие похожие работы, которые могут вас заинтересовать.вшм>

14527. Общие сведения о методах прогнозирования 21.48 KB
Общие сведения о методах прогнозирования ОФП в помещении Общие понятия и сведения об опасных факторах пожара. Методы прогнозирования ОПФ Общие понятия и сведения об опасных факторах пожара Разработка экономически оптимальных и эффективных противопожарных мероприятий основана на научнообоснованном прогнозе динамики ОФП. Современные методы прогнозирования пожара позволяют воспроизвести восстановить картину развития реального пожара. Это необходимо при криминалистической или пожарнотехнической экспертизе пожара.
7103. ОБЩИЕ СВЕДЕНИЯ И ПОНЯТИЯ О КОТЕЛЬНЫХ УСТАНОВКАХ 36.21 KB
В результате этого в паровых котлах вода превращается в пар а в водогрейных котлах нагревается до требуемой температуры. Тягодутьевое устройство состоит из дутьевых вентиляторов системы газовоздуховодов дымососов и дымовой трубы с помощью которых обеспечиваются подача необходимого количества воздуха в топку и движение продуктов сгорания по газоходам котла а также удаление их в атмосферу. представлена схема котельной установки с паровыми котлами. Установка состоит из парового котла который имеет два барабана верхний и нижний.
17665. Общие сведения из метрологии 31.74 KB
Современное состояние измерений в телекоммуникациях Процесс совершенствования измерительных технологий подчиняется общей тенденции усложнения высоких технологий в процессе их развития. Основными тенденциями в развитии современной измерительной техники являются: расширение пределов измеряемых величин и повышение точности измерений; разработка новых методов измерений и приборов с использованием новейших принципов действия; внедрение автоматизированных информационно-измерительных систем характеризуемых высокой точностью быстродействием...
12466. Общие сведения о гидропередачах 48.9 KB
Поэтому в дальнейшем для краткости изложения слово “статические†как правило будет опускаться. При этом усилие F1 необходимое для перемещения поршней бесконечно мало. Для удовлетворения понятию “статическая гидропередача†должно быть выполнено условие геометрического отделения полости нагнетания от полости всасывания.
8415. Общие сведения о ссылках 20.99 KB
Язык C предлагает альтернативу для более безопасного доступа к переменным через указатели.Объявив ссылочную переменную, можно создать объект, который, как указатель, ссылается на другое значение, но, в отличие от указателя, постоянно привязан к этому значению. Таким образом, ссылка на значение всегда ссылается на это значение.
2231. ОБЩИЕ СВЕДЕНИЯ О ГАЗОТУРБИННЫХ ДВИГАТЕЛЯХ 1.28 MB
В данном пособии рассматривается лишь один тип газотурбинные двигатели ГТД т. ГТД широко применяются в авиационной наземной и морской технике.1 показаны основные объекты применения современных ГТД. Классификация ГТД по назначению и объектам применения В настоящее время в общем объеме мирового производства ГТД в стоимостном выражении авиационные двигатели составляют около 70 наземные и морские около 30 .
6149. Общие сведения о промышленных предприятиях РФ и региона 29.44 KB
В частности угольные производства горнорудные производства химические производства нефтедобывающие производства газодобывающие производства геологоразведочные предприятия объекты эксплуатирующие магистральные газопроводы предприятия газоснабжения металлургические производства производства хлебопродуктов объекты котлонадзора объекты эксплуатирующие стационарные грузоподъемные механизмы и сооружения предприятия занятые перевозкой опасных грузов и другие. Классификация объектов экономики промышленных предприятий В...
1591. ОБЩИЕ СВЕДЕНИЯ О ГЕОГРАФИЧЕСКИХ ИНФОРМАЦИОННЫХ СИСТЕМАХ 8.42 KB
Географическая информационная система или геоинформационная система (ГИС) - это информационная система, обеспечивающая сбор, хранение, обработку, анализ и отображение пространственных данных и связанных с ними непространственных, а также получение на их основе информации и знаний о географическом пространстве.
167. Общие сведения по эксплуатация средств вычислительной техники 18.21 KB
Основные понятия Средства вычислительной техники СВТ – это компьютеры к которым относятся персональные компьютеры ПЭВМ сетевые рабочие станции серверы и другие виды компьютеров а также периферийные устройства компьютерная оргтехника и средства межкомпьютерной связи. Эксплуатация СВТ заключается в использовании оборудования по назначению когда ВТ должна выполнять весь комплекс возложенных на нее задач. Для эффективного использования и поддержания СВТ в работоспособном состоянии в процессе эксплуатации проводится...
9440. Общие сведения о приемо-передающих устройствах систем управления средствами поражения 2.8 MB
Электрическая копия первичного сообщения ток или напряжение подлежащего передаче называется управляющим сигналом и обозначается при аналитической записи символами или. Название обусловлено тем что этот сигнал в дальнейшем управляет одним или несколькими из параметров высокочастотных колебаний в процессе модуляции. Спектры управляющих сигналов в этой связи лежат в области низких частот и эффективно излучены быть не могут.

КУРСОВАЯ РАБОТА

по дисциплине: Прогнозирование опасных факторов пожара

Тема: Прогнозирование опасных факторов пожара в помещении с электротехническими материалами: текстолит, карболит (доля горючего материала 12%). Вариант 77.

Программа исследовательского раздела: Исследовать развитие пожара в помещении при работе системы противодымной вентиляции. Расходы: приток – 36000 м 3 /час, вытяжка – 32000 м 3 /час. Время включения системы – 4 минут.

Выполнил: курсант факультета инженеров

пожарной безопасности,

3 курса, 101 взвода,

Н.А. Соловьев

Научный руководитель: начальник кафедры ГПН,

полковник внутренней службы,

кандидат технических наук,

Овсянников М. Ю.

Дата защиты: "___" май 2008 г.

Оценка _____________________

____________________________

(подпись научного руководителя)

Иваново 2008

Введение......................................................................................................3

1. Прогнозирование опасных факторов пожара при его свободном развитии......................................................................................................5

1.1. Исходные данные......................................................................5

1.2. Описание интегральной математической модели.................7

1.3. Результаты численной реализации математической модели.......................................................................................................11

1.4. Описание оперативной обстановки на момент прибытия подразделений пожарной охраны на пожар..................................................................................................17

2. Исследовательская работа..................................................................................................23

2.1. Исходные условия...............................................................................................23

2.2. Результаты прогнозирования ОФП и итоги исследования………………………………………………………….24

2.3. Описание оперативной обстановки на момент прибытия подразделений пожарной охраны на пожар......................................................................................................26

Заключение..............................................................................................31

Приложения..............................................................................................33

Библиография...........................................................................................35

Введение

Научно обоснованное прогнозирование динамики опасных факторов пожара (ОФП) в помещении позволяет оценить обстановку на пожаре, послужить основой экономически оптимального и эффективного уровня обеспечения пожарной безопасности людей, объектов.

Методы математического моделирования пожара не только позволяют предсказать «будущее» развития пожара, но и восстановить картину уже происшедшего пожара, т.е. увидеть «прошлое», - провести экспертизу пожара при его расследовании.

Цель курсовой работы заключается в исследовании развития пожара в помещении, как при его свободном развитии, так и при определённом воздействии на пожар, т.е. изменении различных условий его развития.

Для достижения поставленных целей необходимо решить следующие задачи:

Определить:

Динамику опасных факторов пожара, изменения площади горения, координат плоскости равных давлений за весь период его развития (до τ = 120 мин, если горение не прекратилось раньше);

Время и значение максимальной температуры в помещении;

Время вскрытия оконных проёмов;

Критическую продолжительность пожара по достижению каждым из ОФП своих критических значений;

Необходимое время эвакуации из помещения;

Время достижения пороговых значений для оборудования, конструкций;

Оперативную обстановку на момент прибытия подразделений пожарной охраны на пожар (τ = 12мин) и подачи первых стволов на тушение τ = 20 мин.);

Для исследовательской части определить:

Влияние вентиляции на основные параметры развития ОФП, в сравнении со свободным развитием.

Пути и средства достижения поставленных целей.

Для проведения научно обоснованного прогноза, используется интегральная математическая модель пожара, для заданных условий однозначности (характеристик помещения, горючей нагрузки и т.д.) путём решения системы дифференциальных уравнений.

Получить аналитическое решение системы обыкновенных дифференциальных уравнений интегральной модели пожара в общем случае невозможно.

Достижение поставленных целей в прогнозировании ОФП в помещении возможно лишь путём численного решения системы дифференциальных уравнений пожара. Для изучения динамики ОФП служит компьютерный эксперимент, т.е. получение численного решения при помощи современных ЭВМ.

Для численной реализации математической модели используется программа INTMODEL, разработанная на кафедре «Инженерной теплофизики и гидравлики» Академии ГПС МЧС России.

Прогнозирование опасных факторов пожара при его свободном развитии.

Исходные данные.

Помещение для1-2 степени огнестойкости расположено в одноэтажном здании. Стены здания кирпичные, толщиной 630 мм, покрытие железобетонное, толщиной 100 мм. Полы деревянные. Вентиляция механическая приточно-вытяжная. При возникновении пожара отключается автоматически. Отопление центральное водяное. Противодымная защита помещения отсутствует.

К зданию пристроено складское помещение, отделённое от помещения с керосином противопожарной стеной первого типа.

Помещение имеет следующие размеры:

Длину a =10 м;

Ширину b = 8 м;

Высоту 2h = 3 м.

В наружных стенах здания по его длине расположены оконные проёмы по 2 с каждой стороны. Размерами 2,0 х 2,0 м. Окна расположены на высоте от пола до нижних краёв проёмов 0,5 м. Следовательно, координаты расположения нижних и верхних краёв оконных проёмов будут y н =0,5 и y в =2,5м соответственно. Суммарная ширина оконных проёмов 8 м.

Оконные проёмы остеклены листовым оконным стеклом. Остекление разрушается при среднеобъемной температуре газовой среды в помещении – T ок. = 300 ° С.

Двери эвакуационных выходов из помещения во время пожара открыты для эвакуации. Ширина двери – 0,8 м, высота –1,9 м, т.е. и м. Суммарная ширина дверных проёмов м.

Электротехнические материалы: текстолит, карболит (доля горючего материала 12%).

Площадь пола занятая горючим материалом составляет

где - площадь пола помещения, м 2 .

Общее количество материала пожарной нагрузки помещения , кг (масса материала) при , кг/м 2 находится по формуле

где - масса горючего материала на одном квадратном метре площади пола, занятой горючим материалом (), кг/м 2 .

Твёрдый горючий материал занимает площадку прямоугольной формы. Размеры сторон прямоугольника и определены из выражений

Введение


В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно-обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

·при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;

·при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);

·при оценке фактических пределов огнестойкости;

·для расчета пожарного риска и многих других целей.

Современные методы прогнозирования ОФП позволяют не только спрогнозировать вероятные пожары, но и смоделировать уже произошедшие пожары для их анализа и оценки действия РТП.

Опасными факторами пожара, воздействующими на людей и материальные ценности (согласно Федеральному закону Российской Федерации от 22 июля 2008 г. №123-ФЗ «Технический регламент о требованиях пожарной безопасности»), являются:

·пламя и искры;

·повышенная температура окружающей среды;

·пониженная концентрация кислорода;

·токсичные продукты горения и термического разложения;

·снижение видимости в дыму;

·тепловой поток.

С научных позиций опасные факторы пожара являются физическими понятиями и, следовательно, каждый из них представлен в количественном отношении физической величиной.

Современные научные методы прогнозирования ОФП основываются на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещении с течением времени, а также параметров состояния ограждающих конструкций этого помещения и различных элементов (технологического) оборудования.

Основные уравнения, из которых состоит математическая модель пожара, вытекают из фундаментальных законов природы: первого закона термодинамики и закона сохранения массы. Эти уравнения отражают и увязывают всю совокупность взаимосвязанных и взаимообусловленных процессов, присущих пожару, таких как тепловыделение в результате горения, дымовыделение в пламенной зоне, изменение оптических свойств газовой среды, выделение и распространение токсичных газов, газообмен помещения с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций, снижение концентрации кислорода в помещении.

Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара. Математические модели пожара в помещении условно делятся на три вида: интегральные, зонные и полевые (дифференциальные).

Чтобы сделать научно обоснованный прогноз, необходимо обратиться к той или иной модели пожара. Выбор модели определяется целью (задачами) прогноза (исследования) для заданных условий однозначности (характеристики помещения, горючего материала и т.д.) путем решения системы дифференциальных уравнений, которые составляют основу выбранной математической модели.

Интегральная модель пожара позволяет получить информацию (т.е. позволяет сделать прогноз) о среднеобъемных значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять (соотносить) средние (т.е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма и т.д.

Однако даже при использовании интегральной модели пожара получить аналитическое решение системы обыкновенных дифференциальных уравнений в общем случае невозможно. Реализация выбранного метода прогнозирования возможна только путем ее численного решения при помощи компьютерного моделирования.


1. Тема и задачи курсовой работы


Курсовая работа является одним из видов самостоятельной учебной работы слушателей по освоению учебного материала и завершающим этапом изучения методов прогнозирования ОФП на базе математических моделей пожара, рассматриваемых на дисциплине «Прогнозирование опасных факторов пожара», а также формой контроля со стороны учебного заведения за уровнем соответствующих знаний и умений курсантов.

Курсовая работа ставит перед слушателями следующие задачи:

·закрепить и углубить знания в области математического моделирования динамики опасных факторов пожара;

·на конкретных примерах получить сведения о степени взаимообусловленности и взаимосвязанности всех физических процессов, присущих пожару (газообмен помещения с окружающей средой, тепловыделение в пламенной зоне и нагревание строительных конструкций, дымовыделение и изменение оптических свойств газовой среды, выделение и распространение токсичных газов и др.);

·усвоить методику прогнозирования ОФП с помощью компьютерной программы, реализующей интегральную математическую модель пожара;

·получить навыки пользования компьютерными программами при исследовании пожаров.

Тема и цель курсовой работы - прогнозирование опасных факторов пожара в помещении (назначение и другие характеристики которого определяются вариантом задания).


2. Требования к содержанию и оформлению курсовой работы


Курсовая работа выполняется в соответствии с методическими указаниями и состоит из расчетно-пояснительной записки и графической части. Расчетно-пояснительная записка состоит из пояснительного текста, результатов расчетов в виде таблиц, чертежей и схем, отражающих геометрические характеристики объекта и картину газообмена в помещении при пожаре. Графическая часть представлена графиками развития опасных факторов пожара в помещении в течение времени.

Необходимый справочный материал дан в приложениях к указаниям и в рекомендуемой литературе.

Прежде чем приступить к выполнению курсовой работы, необходимо: изучить материал по дисциплине, ознакомиться с методическими указаниями, подобрать рекомендуемую учебную, справочную и нормативную литературу. Ответы по каждому пункту задания выдаются в развернутом виде с обоснованием.

Работа должна быть выполнена аккуратно, чернилами черного цвета или напечатана черным шрифтом на печатных листах формата А4. Текст в пояснительной записке следует писать разборчиво, без сокращений слов (за исключением общепринятых сокращений), на одной стороне листа. Компьютерный вариант работы набирается в текстовом процессоре Word, шрифт Times New Roman с 1-1,5 межстрочным интервалом. Размер шрифта для текста - 12 или 14, для формул - 16, для таблиц - 10, 12 или 14. Размеры полей на листе - 2 см со всех сторон. Абзацный отступ не менее 1 см.

При расчете необходимого времени эвакуации следует приводить формулы и подставляемые в них величины, единицы измерения физических величин, получаемых в ответе.

Заголовки разделов и глав пишутся прописными буквами. Заголовки подразделов - строчными буквами (кроме первой прописной). Переносы слов в заголовках не допускаются. Точка в конце заголовка не ставится. Нумерация таблиц, рисунков и графиков должна быть сквозной.

Страницы курсовой работы должны быть пронумерованы арабскими цифрами. Первой страницей является титульный лист, второй - задание на выполнение курсовой работы, третьей - содержание и т.д. На первой странице курсовой работы номер не ставится. Страницы курсовой работы, кроме титульного листа, и задания на курсовую работу должны быть пронумерованы. Бланк задания на выполнение курсовой работы приведен в приложении 1.

На титульном листе должны быть указаны:

наименование министерства, учебного заведения и кафедры, на которой выполняется курсовая работа;

тема курсовой работы и вариант задания;

Ф.И.О. слушателя, выполнившего курсовую работу;

звание, должность, Ф.И.О. научного руководителя;

город и год выполнения курсовой работы.

В конце работы необходимо указать использованную литературу (фамилия и инициалы автора, полное наименование книги, издательство и год издания). Оформленную курсовую работу слушатель должен подписать, поставить дату и сдать на проверку на факультет заочного обучения. Наличие допуска к защите является основанием для вызова слушателя на лабораторно-экзаменационную сессию.

Если работа удовлетворяет требованиям, предъявляемым к ней, то руководитель допускает ее к защите. Работа, признанная не отвечающим предъявленным требованиям, возвращается обучаемому на доработку.

Защита курсовых работ слушателями факультета заочного обучения может проводиться во время сессии. Результаты защиты оцениваются по четырехбалльной системе: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Руководитель проекта проставляет оценку на титульном листе работы, в ведомости, зачетной книжке обучаемого и заверяет подписью. Проставляются только положительные оценки.

При получении неудовлетворительной оценки слушатель обязан повторно выполнить работу по новой теме или переработать прежнюю.


3. Выбор варианта задания и исходные данные


Вариант задания на выполнение курсовой работы определяется по номеру в списке учебной группы (по номеру в журнале группы). Номер варианта указывается на титульном листе курсовой работы. В зависимости от года поступления слушателей на обучение (набор 2010 г., 2011 г. и т.д.) исходные данные для расчетов (температура атмосферного воздуха и внутри помещения, размеры помещения и проемов, параметры горючей нагрузки и т.д.) приведены в таблицах 1-5 (Приложение 2).

Данные, полученные с помощью компьютерного моделирования и необходимые для выполнения главы 3, выдаются по вариантам индивидуально в электронном виде на установочной лекции по дисциплине.

Дополнительные данные для всех вариантов:

критическая температура для остекления - 300°С;

число проемов - 2 (окна и дверь);

противодымная механическая вентиляция - отсутствует;

автоматическая установка пожаротушения (АУП) - отсутствует;

все остальные не указанные параметры принять по умолчанию.

Сокращения , принятые при изложении курса «Прогнозирование опасных факторов пожара»:

ОФП - опасные факторы пожара;

ПДЗ - предельно-допустимое значение опасного фактора пожара;

ПРД - плоскость равных давлений (нейтральная плоскость);


1.В соответствии с вариантом задания в 1 главе курсовой работы произвести расчет исходных параметров горючей нагрузки в рассматриваемом помещении.

2.Начертить план здания, указать на плане размеры помещения и горючей нагрузки.

.В главе 2 привести описание системы дифференциальных уравнений, на основе которых создана интегральная математическая модель пожара в помещении, с полным разъяснением всех вошедших в нее физических величин.

.В соответствии с вариантом задания на выполнение курсовой работы взять у преподавателя готовые табличные данные (таблица 1) по динамике развития среднеобъемных значений ОФП при свободном развитии пожара, рассчитанные с помощью компьютерной программы INTMODEL, реализующей интегральную математическую модель пожара в помещении.

5.По табличным данным построить соответствующие графические зависимости среднеобъемных параметров от времени развития пожара: m(t);


µ m (t); lвид(t); (t); (t); (t); сm (t); Y*(t); Sпож (t); Gв (t); Gг (t); ДP(t).


6.Сделать описание и сравнительные выводы по полученным графикам, объяснить скачки на графиках (при их наличии).

7.Руководствуясь рассчитанными с помощью компьютерной программы данными и графическими зависимостями ОФП от времени, в 4 главе курсовой работы охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий, в целом описать прогноз развития пожара.

.Определить критическую продолжительность пожара по условию достижения каждым опасным фактором пожара предельно допустимого (среднеобъемного) значения и необходимое время эвакуации людей из рассматриваемого помещения:

а) по данным математического моделирования (свести результаты в таблицу 2);

b) по методике определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404 к пункту 33 (Методики определения расчетных величин пожарного риска на производственных объектах).

Полученные результаты расчетов отразить в 4 главе курсовой работы, там же сделать выводы: в чем сходство и различие этих методик, чем можно объяснить различие в результатах расчетов.

9.Согласно результатам таблицы 2 сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении. В случае их неэффективной работы предложить им альтернативную замену (приложение 3).

10.Провести расчеты параметров ОФП для уровня рабочей зоны (ОФПл) при свободном развитии пожара в момент времени 11 минут, согласно формуле:


(ОФПл - ОФП0) = (ОФПm - ОФП0)·Z,


где ОФПл - локальное значение ОФП;

ОФП0 - начальное значение ОФП;

ОФПm - среднеобъемное значение опасного фактора пожара;- безразмерный параметр, вычисляемый по формуле:

При H £ 6 м,


где h - высота рабочей зоны, м;

Н - высота помещения, м.

11.Результаты расчетов ОФП для уровня рабочей зоны внести в таблицу в 5 главе курсовой работы.

12.На основании полученных расчетов для времени 11 минут:

а) привести схему газообмена в помещении для времени развития пожара 11 минут при свободном развитии пожара;

b) дать подробную характеристику оперативной обстановки на пожаре по расчетам ОФП для уровня рабочей зоны, предложить меры по проведению безопасной эвакуации людей.

13.Сделать общий вывод по курсовой работе. Вывод должен включать:

а) краткое описание объекта;

b) анализ ОФП, достигших своего предельно допустимого значения на 11 минуте при свободном развитии пожара;

c) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d) анализ своевременности срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e) описание действий персонала объекта при возникновении пожара, исходя из данных, полученных при расчетах;

f) описание действий пожарных подразделений, исходя из положения, что время их прибытия - 10 минута от начала развития пожара;

g) рекомендации владельцу помещения и пожарным расчетам, позволяющие обеспечить безопасную эвакуацию в случае возникновения пожара в помещении. Рекомендации следует увязать с результатами прогнозирования динамики ОФП для данного помещения;

h) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

14.В конце курсовой работы привести список использованной литературы.


5. Образец выполнения курсовой работы


МЧС РОССИИ

Федеральное Государственное бюджетное образовательное

учреждение высшего профессионального образования

«Уральский институт Государственной противопожарной службы

Министерства Российской Федерации по делам гражданской обороны,

чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»

Кафедра физики и теплообмена

КУРСОВАЯ РАБОТА

Тема: Прогнозирование опасных факторов пожара в складском помещении

Вариант №35

Выполнил:

слушатель учебной группы З-461

старший лейтенант внутренней службы Иванов И.И.

Проверил:

старший преподаватель кафедры

физики и теплообмена, к.п.н., капитан внутренней службы

Субачева А.А.

Екатеринбург


на выполнение курсовой работы

по дисциплине «Прогнозирование опасных факторов пожара»

Слушатель Иванов Иван Иванович

Вариант №35 Курс 4 Группа З-461

Наименование объекта: склад хлопка в тюках


Исходные данные

Блок атмосферадавление, мм. рт. ст.760температура, 0С 20Блок помещениедлина, м60высота, м6ширина, м24температура, 0С20проем 1 - штатный (дверь)нижний срез, м0? ширина, м3,6верхний срез, м3вскрытие, 0С20проем 2 - штатный (окна)? ширина, м24нижний срез, м1,2вскрытие, 0С300верхний срез, м2,4Блок нагрузкавид горючего материалахлопок в тюкахдымовыделение Нп*м2/кг0,6длина, м32,9выделение СО, кг/кг0,0052ширина, м13,1выделение СО2, кг/кг0,578количество ГН, кг4320удельная скорость выгорания, кг/м2*с0,0167выделение тепла МДж/кг16,7скорость распространения пламени, м/с0,0042потребление кислорода кг/кг1,15

Срок сдачи: «____»__________

Слушатель____________________ Руководитель_______________

1. Исходные данные


Помещение пожара расположено в одноэтажном здании. Здание построено из сборных железобетонных конструкций и кирпича. В здании наряду с помещением склада находятся два рабочих кабинета. Оба помещения отделены от склада противопожарной стеной. План объекта приведен на рисунке 1.

(Требуется проставить на схеме размеры помещения и расчетную массу горючей нагрузки согласно своему варианту!)


Рис. 1. План здания


Размеры склада:

длина l1 = 60 м;

ширина l2 = 24 м;

высота 2h = 6 м.

В наружных стенах помещения склада имеется 10 одинаковых оконных проемов. Расстояние от пола до нижнего края каждого оконного проема YH = 1,2 м. Расстояние от пола до верхнего края проема YB = 2,4 м. Суммарная ширина оконных проемов = 24 м. Остекление оконных проемов выполнено из обычного стекла. Остекление разрушается при среднеобъемной температуре газовой среды в помещении, равной 300°С.

Помещение склада отделено от рабочих кабинетов противопожарными дверьми, ширина и высота которых 3 м. При пожаре эти проемы закрыты. Помещение склада имеет один дверной проем, соединяющий его с наружной средой. Ширина проема равна 3,6 м. Расстояние от пола до верхнего края дверного проема Yв = 3, Yн =0. При пожаре этот дверной проем открыт, т.е. температура вскрытия 20 0C.

Полы бетонные, с асфальтовым покрытием.

Горючий материал представляет собой хлопок в тюках. Доля площади, занятая горючей нагрузкой (ГН) = 30%.

Площадь пола, занятая ГН, находится по формуле:


где? площадь пола.


Количество горючего материала на 1 Р0 = 10. Общая масса горючего материала.

Горение начинается в центре прямоугольной площадки, которую занимает ГМ. Размеры этой площадки:



Свойства ГН характеризуются следующими величинами:

теплота сгорания Q = 16,7 ;

выделение оксида углерода = 0,0052 .

Механическая вентиляция в помещениях отсутствует. Естественная вентиляция осуществляется через дверные и оконные проемы.

Отопление центральное водяное.

Внешние атмосферные условия:

ветер отсутствует, температура наружного воздуха 200C = 293 К

давление (на уровне Y=h) Ра = 760 мм. рт. ст., т.е. = 101300 Па.

Параметры состояния газовой среды внутри помещения перед пожаром :

Т = 293 К (согласно выбранному варианту);

Р = 101300 Па;


Другие параметры:

критическая температура для остекления? 300 оС;

материал ограждающих конструкций - железобетон и кирпич;

температура воздуха в помещении - 20 оС;

автоматическая система пожаротушения? отсутствует;

противодымная механическая вентиляция? отсутствует.


2. Описание интегральной математической модели свободного развития пожара в складском помещении


Интегральная математическая модель пожара в помещении разработана на основе уравнений пожара, изложенных в работах . Эти уравнения вытекают из основных законов физики: закона сохранения вещества и первого закона термодинамики для открытой системы и включают в себя:

уравнение материального баланса газовой среды в помещении:


V(dсm/dф) = GB + ш - Gr, (1)


где V - объем помещения, м3; сm - среднеобъемная плотность газовой среды кг/м3; ф - время, с; GB и Gr - массовые расходы поступающего в помещение воздуха и уходящих из помещения газов, кг/с; ш - массовая скорость выгорания горючей нагрузки, кг/с;

уравнение баланса кислорода:


Vd(p1)/dф = xGB - x1n1Gr - ш L1Ю, (2)


где x1 - среднеобъемная массовая концентрация кислорода в помещении; х - концентрация кислорода в уходящих газах; n1 - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах х1, n1 = х/x1; L1 - скорость потребления кислорода при горении, p1 - парциальная плотность кислорода в помещении;

уравнение баланса продуктов горения:


Vd(p2)/dф = ш L2Ю - x2n2Gr, (3)

где Xi - среднеобъемная концентрация i-гo продукта горения; Li - скорость выделения i-гo продукта горения (СО, СО2); ni - коэффициент, учитывающий отличие концентрации i-гo продукта в уходящих газах x от среднеобъёмного значения xi, ni = xi; р2 - парциальная плотность продуктов горения в помещении;

уравнение баланса оптического количества дыма в помещении:


Vd ()/d =Dш - n4 Gr/ рm - кcSw, (4)


где - среднеобъемная оптическая плотность дыма; D - дымообразующая способность ГМ; n4 - коэффициент, учитывающий отличие концентрации дыма в уходящих из помещения нагретых газах от среднеобъемной оптической концентрации дыма, n4= мmг /мm;

уравнение баланса энергии U:


dU/dф = hQpнш + iгш + СрвТвGв - СрТmm Gr - Qw, (5)


где Pm - среднеобъемное давление в помещении, Па; Срm, Тm - среднеобъемные значения изобарной теплоемкости и температуры в помещении; Q p н - низшая рабочая теплота сгорания ГН, Дж/кг; Срв, Тв - изобарная теплоемкость и температура поступающего воздуха, К; iг - энтальпия газификации продуктов горения ГН, Дж/кг; m - коэффициент, учитывающий отличие температуры Т и изобарной теплоемкости Срг уходящих газов от среднеобъемной температуры Тm и среднеобъемной изобарной теплоемкости Срm,


m = СргТг/СрmТm;


Ю - коэффициент полноты сгорания ГН; Qw - тепловой поток в ограждение, Вт.

Среднеобъемная температура Тm связана со среднеобъёмным давлением Рm и плотностью рm уравнением состояния газовой среды в помещении:


Pm= сmRmTm.(6)


Уравнение материального баланса пожара с учетом работы приточно-вытяжной системы механической вентиляции, а так же с учетом работы системы объемного тушения пожара инертным газом примет следующий вид:


VdPm/ dф = ш + GB - Gr + Gпр - Gвыт + Gов, (7)


Вышеуказанная система уравнений решается численными методами с помощью компьютерной программы. Примером может служить программа INTMODEL.


. Расчет динамики ОФП с помощью компьютерной программы INTMODEL


Результаты компьютерного моделирования

Учебная компьютерная программа INTMODEL реализует описанную выше математическую модель пожара и предназначена для расчета динамики развития пожара жидких и твердых горючих веществ и материалов в помещении. Программа позволяет учитывать вскрытие проемов, работу систем механической вентиляции и объемного тушения пожара инертным газом, а также учитывает кислородный баланс пожара, позволяет рассчитывать концентрацию оксидов углерода СО и СО2, задымленность помещения и дальность видимости в нем.

Таблица 1. Динамика развития параметров газовой среды в помещении и координат ПРД

Вpемя, минТемпература tm, 0СОптическая плотность дыма µm, Нп/мДальность видимости lm, м,

масс.%, масс.%сm, кг/м3Нейтральная плоскость - ПРД Y*, мGв, кг/сGг, кг/сДP, ПаSпож, м2020064,6223001,20531,50,0080,00800120064,6222,999001,2051,150,160,3290,010,2221064,6222,99400,0031,20261,040,411,0650,050,8322064,6222,9800,0091,19620,960,6762,0720,181,8425064,6222,95100,0221,18410,910,9493,2480,433,19530064,6222,90300,0451,16580,891,2374,490,824,99636064,6222,8290,0010,0781,14120,871,5485,7021,347,18745064,6222,7240,0010,1271,11090,881,896,8111,979,78855064,6222,580,0020,1921,0760,892,267,7722,6812,77967064,6222,3910,0030,2791,03850,912,658,5563,4216,171081064,6222,1490,0040,390,99760,912,9319,3914,2719,9711970,00164,6221,8450,0050,530,95410,913,2610,0515,1524,17 121150,00164,6221,4710,0060,7020,90950,933,63110,5276,0128,78131350,00164,6221,0190,0080,9110,86550,954,03610,8256,8333,81141560,00164,6220,4830,011,1610,82350,984,46610,9677,5739,25151770,00164,6219,8620,0131,4550,78461,014,91510,9778,2245,11161980,00264,6219,1580,0161,7950,74991,045,37210,8828,7451,41172180,00364,6218,3820,022,180,72021,085,83710,7019,1458,14182350,00464,6217,5540,0232,6080,69591,126,29810,4639,4165,29192480,00664,6216,7020,0283,0750,67741,166,73710,1969,5572,87202580,00964,6215,8590,0323,5710,66481,197,1469,9169,5980,83212640,01364,6215,0580,0374,0880,65771,237,5059,6479,5389,13222660,01864,6214,3270,0414,6120,65531,267,7979,4089,4197,71232650,02564,6213,680,0465,1340,65681,288,0289,1989,25106,5242610,03364,6213,1210,0515,6450,66121,38,1299,0789,1115,41252560,04257,0812,6480,0556,1380,66761,38,089,0698,99124,38262500,05146,7512,2510,0596,6110,67481,338,3348,7958,7133,33272450,0639,4711,9180,0647,060,68241,439,2347,9978,05141,51282430,0734,0111,5990,0687,5260,68492,0716,033,6534,76149,08292410,0829,7911,3370,0727,9760,68742,116,3183,4874,59156,38302370,0926,5811,1320,0758,390,69252,0315,4353,8924,9163,28312320,09924,1410,970,0798,7650,69991,8513,3834,9785,69169,74322250,10722,310,8480,0829,0950,70921,5410,0637,1147,1175,72332190,11420,9210,7580,0849,3840,71851,358,1848,5217,87181,31342140,1219,8610,6750,0879,6540,72591,37,6418,9198,01186,62352100,12519,0210,5950,0899,9120,73141,287,4549,0297,99191,74362070,1318,3110,5190,09110,1570,73581,287,3819,0497,94196,69372050,13417,7110,4480,09310,3920,73941,277,3319,0577,89201,5382030,13817,210,3840,09510,6150,74241,277,2859,0667,85206,18392010,14216,7510,3240,09710,8270,7451,277,2449,0757,82210,76402000,14616,3510,2690,09911,030,74731,277,2079,0847,79215,24411980,14915,9910,2190,10111,2230,74921,267,1749,0927,76219,62421970,15215,6810,1720,10311,4080,7511,267,1449,17,74223,92431960,15515,3910,1280,10411,5840,75261,267,1179,1087,72228,14441960,15715,1310,0880,10611,7530,7541,267,0929,1157,71232,3451950,1614,8910,0490,10711,9140,75521,267,079,1217,69236,38461940,16214,6810,0130,10912,0690,75631,267,059,1277,68240,4471930,16414,489,9790,1112,2170,75731,267,0319,1337,67244,36481890,16614,3510,0550,1112,2490,76531,448,5737,6846,73248,07491740,16314,5710,4160,10811,9570,78951,579,4396,6955,85250,96501570,15715,210,9260,10311,4720,82081,659,8145,9975,09253,06511400,14716,211,5050,09810,8920,85581,729,9275,4134,4254,53521230,13617,5212,1040,09310,2830,89291,779,8384,8973,77255,54531060,12419,1312,6920,0879,6890,93081,819,5584,4453,2256,2254920,11321,0113,2440,0829,1370,96811,849,0994,0612,69256,6655790,10323,1513,7460,0788,6421,00351,868,4953,742,26256,9556680,09325,5514,1910,0748,2081,0361,867,7953,471,89257,1457590,08428,2114,5780,077,8351,06471,836,9213,3411,62257,2557,5550,0829,7514,7590,0697,6621,07771,816,5173,2621,49257,3


Изменение среднеобъемных параметров газовой среды во времени


Рис. 2. Изменение среднеобъемной температуры газовой среды во времени


Описание графика: Рост температуры в первые 22 минуты пожара можно объяснить горением в режиме ПРН, что обусловлено достаточным содержанием кислорода в помещении. С 23 минуты пожар переходит в режим ПРВ в связи со значительным снижением концентрации кислорода. С 23 минуты по 50 минуту интенсивность горения постоянно снижается, несмотря на продолжающееся возрастание площади горения. Начиная с 50 минуты, пожар снова переходит в режим ПРН, что связано с увеличением концентрации кислорода в результате выгорания горючей нагрузки.

Выводы по графику: На графике температуры можно условно выделить 3 стадии развития пожара. Первая стадия - нарастание температуры (приблизительно до 22 мин.), вторая - квазистационарная стадия (с 23 мин. до 50 мин.), и третья - стадия затухания (с 50 мин. до полного выгорания горючей нагрузки).


Рис. 3. Изменение оптической плотности дыма во времени


Описание графика: В начальной стадии пожара выделение дыма незначительно, полнота сгорания максимальна. В основном дым начинает выделяться после 22 минуты от начала возгорания, а превышение ПДЗ по среднеобъемному значению плотности дыма произойдет примерно на 34 минуте. Начиная с 52 минуты, с переходом в режим затухания, задымление уменьшается.

Выводы по графику: Выделение значительных количеств дыма началось только с переходом пожара в режим ПРВ. Опасность снижения видимости в дыму в данном помещении невелика - ПДЗ будет превышено ориентировочно только после 34 минут от начала возгорания, что так же можно объяснить наличием в помещении открытых проемов большого размера (дверь).


Рис. 4. Изменение дальности видимости в помещении во времени


Описание графика: На протяжении 26 минут развития пожара дальность видимости в горящем помещении остается удовлетворительной. С переходом в режим ПРВ видимость в горящем помещении быстро ухудшается.

Выводы по графику: Дальность видимости связана с оптической плотностью дыма соотношением. То есть дальность видимости обратно пропорциональна оптической плотности дыма, поэтому при увеличении задымления дальность видимости уменьшается и наоборот.


Рис. 5. Изменение среднеобъемной концентрации кислорода во времени


Описание графика: В первые 9 минут развития пожара (начальная стадия) среднеобъемная концентрация кислорода почти не изменяется, т.е. потребление кислорода пламенем низкое, что может быть объяснено малыми размерами очага горения в это время. По мере увеличения площади горения содержание кислорода в помещении снижается. Примерно с 25 минуты от начала горения содержание кислорода стабилизируется на уровне 10-12 масс.% и остается почти неизменным примерно до 49-й минуты пожара. Таким образом, с 25-й по 49-ю минуту в помещении реализуется режим ПРВ, т.е. горение в условиях недостатка кислорода. Начиная с 50-й минуты содержание кислорода увеличивается, что соответствует стадии затухания, при которой поступающий воздух снова постепенно заполняет помещение.

Выводы по графику: график концентрации кислорода, аналогично графику температуры, позволяет выявить моменты смены режимов и стадий горения. Момент превышения ПДЗ по кислороду на данном графике отследить нельзя, для этого понадобится пересчитать массовую долю кислорода в его парциальную плотность, используя значение среднеобъемной плотности газа и формулу .

Рис. 6. Изменение среднеобъемной концентрации СО во времени развития пожара


Описание графика: сделать описание и выводы по графикам по аналогии с вышеприведенными.

Выводы по графику:


Рис. 7. Изменение среднеобъемной концентрации СО2 во времени


Описание графика:

Выводы по графику:

Рис. 8. Изменение среднеобъемной плотности газовой среды во времени


Описание графика:

Выводы по графику:


Рис. 9. Изменение положения плоскости равных давлений во времени


Описание графика:

Выводы по графику:

Рис. 10. Изменение притока свежего воздуха в помещение от времени развития пожара


Описание графика:

Выводы по графику:


Рис. 11. Изменение оттока нагретых газов из помещения от времени развития пожара


Описание графика:

Выводы по графику:

Рис. 12. Изменение разности давлений во времени


Описание графика:

Выводы по графику:


Рис. 13. Изменение площади горения при пожаре во времени


Описание графика:

Выводы по графику:

Описание обстановки на пожаре в момент времени 11 минут


Согласно п. 1 ст. 76 ФЗ-123 «Технический регламент о требованиях пожарной безопасности», время прибытия первого подразделения пожарной охраны к месту вызова в городских поселениях и городских округах не должно превышать 10 минут. Таким образом, описание обстановки на пожаре проводится на 11 минуту от начала пожара.

В начальные моменты времени при свободном развитии пожара параметры газовой среды в помещении достигают следующих значений:

Достигается температура 97°С (переходит пороговое значение 70°C);

Дальность видимости практически не изменилась и составляет 64,62 м, т.е. еще не переходит пороговое значение в 20 м;

Парциальная плотность газов составляет:

с= 0,208 кг/м3, что меньше предельной парциальной плотности по кислороду;

с= 0,005 кг/м3, что меньше предельной парциальной плотности по углекислому газу;

с= 0,4*10-4 кг/м3, что меньше предельной парциальной плотности по угарному газу;

ПРД будет находиться на уровне 0,91 м;

площадь горения составит 24,17 м2.

Таким образом, расчеты показали, что на 11 минуту свободного развития пожара, следующие ОФП достигнут своего предельно допустимого значения: среднеобъемная температура газовой среды (на 10 минуте).


. Время достижения пороговых и критических значений ОФП


Согласно ФЗ-123 «Технический регламент о требованиях пожарной безопасности», необходимым временем эвакуации считается минимальное время достижения одним из опасных факторов пожара своего критического значения.

Необходимое время эвакуации из помещения по данным математического моделирования


Таблица 2. Время достижения пороговых значений

№ п/пПороговые значенияВремя достижения, мин1Предельная температура газовой среды t = 70°C102Критическая дальность видимости 1кр = 20 м333Предельно допустимая парциальная плотность кислорода с = 0,226 кг/м3104Предельно допустимая парциальная плотность двуокиси углерода (с)пред = (с)пред= 0,11 кг/м3не достигается5Предельно допустимая парциальная плотность оксида углерода (с)пред = (с)пред= 1,16*10 -3 кг/м3не достигается6Максимальная среднеобъемная температура газовой среды Тm= 237 + 273 = 510 К307Критическая температура для остекления t = 300°Cне достигается8Пороговая температура для тепловых извещателей ИП-101-1А tпopor= 70°C9

В данном случае минимальным временем для эвакуации из помещения склада является время достижения предельной температуры газовой среды, равное 10 мин.

Вывод:

а) охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий и в целом описать прогноз развития пожара;

b) сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении (см. п. 8 таблица 2). В случае неэффективной работы пожарных извещателей предложить им альтернативу (приложение 3).

Определение времени от начала пожара до блокирования
эвакуационных путей опасными факторами пожара Рассчитаем необходимое время эвакуации для помещения с размерами 60·24·6, пожарной нагрузкой в котором является хлопок в тюках. Начальная температура в помещении 20°С.

Исходные данные:

помещение

свободный объем



безразмерный параметр



температура t0 = 20 0С;

вид горючего материала - хлопок в тюках - ТГМ, n=3;

теплота сгорания Q = 16,7 ;

удельная скорость выгорания = 0,0167 ;

скорость распространения пламени по поверхности ГМ;

дымообразующая способность D = 0,6 ;

потребление кислорода = 1,15 ;

выделение диоксида углерода = 0,578 ;

выделение оксида углерода = 0,0052 ;

полнота сгорания ГМ;

другие параметры

коэффициент отражения б = 0,3;

начальная освещенность Е = 50 Лк;

удельная изобарная теплоемкость Ср = 1,003?10 -3 МДж/кг?К;

предельная дальность видимости =20 м;

предельные значения концентрации токсичных газов:

0,11 кг/м3;

1,16?10-3 кг/м3;

Расчет вспомогательных параметров


А = 1,05?? = 1,05?0,0167? (0,0042)2 = 3,093?10-7 кг/с3

В = 353?Ср?V/(1-) ??Q = 353?1,003?10-3?6912/(1-0.6)?0,97?16,7 = 377,6 кг


В/А = 377,69/3,093?10-7 = 1,22?109 c3

Расчет времени наступления ПДЗ ОФП:

1)по повышенной температуре:



2)по потере видимости:

3)по пониженному содержанию кислорода:


4)по углекислому газу СО2



под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

5)по угарному газу СО



под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

Критическая продолжительность пожара:


tкр= miníý = í746; 772; ý = 746 с.


Критическая продолжительность пожара обусловлена временем наступления предельно допустимого значения температуры в помещении.

Необходимое время эвакуации людей из складского помещения:


tнв = 0,8*tкр/60 = 0,8*746/60 = 9,94 мин.


Сделать заключение о достаточности / недостаточности времени на эвакуацию по данным расчета.

Вывод: сравнить необходимое время эвакуации, полученное различными методами, и, при необходимости, объяснить различия в результатах.


. Расчет динамики ОФП для уровня рабочей зоны. Анализ обстановки на пожаре на момент времени 11 минут


Уровень рабочей зоны согласно ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования» принимается равным 1,7 метра.

Связь между локальными и среднеобъемными значениями ОФП по высоте помещения имеет следующий вид:


(ОФП? ОФПо) = (ОФП? ОФПо)·Z,


где ОФП? локальное (пороговое) значение ОФП;

ОФПо? начальное значение ОФП;

ОФП? среднеобъемное значение опасного фактора;

Z ? безразмерный параметр, вычисленный по формуле (см. п. 4.2).


Таблица 3. Динамика развития ОФП на уровне рабочей зоны

Время, минТm, оС, масс%,

Нп/м, м, масс%, масс%, кг/м3, м120,023,0000,0000064,620,000000,000001,205171,353220,422,9970,0000064,620,000000,001261,204161,306320,822,9920,0000064,620,000000,003791,201471,273422,122,9790,0000064,620,000000,009271,196371,251524,222,9590,0000064,620,000000,018961,188661,243626,722,9280,0000064,620,000420,032861,178301,235730,522,8840,0000064,620,000420,053501,165531,239834,722,8230,0000064,620,000840,080891,150831,243939,822,7430,0000064,620,001260,117541,135031,2511045,722,6410,0000064,620,001690,164301,117801,2511152,422,5130,0004264,620,002110,223281,099481,251 1260,022,3560,0004264,620,002530,295741,080691,260

Площадь пожара составляет 24,17 м.

Температура на уровне рабочей зоны составляет 52,4 0С, что не достигает ПДЗ, равное 70 0С.

Дальность видимости в помещении не изменилась и составляет

2,38/0,00042 = 5666 м.

Концентрация кислорода в норме: 22,513 масс%.

Парциальные плотности О2, СО и СО2 на уровне рабочей зоны равны соответственно:


1,09948?22,513/100 = 0,247 кг/м3;

1,09948?0,00211/100 = 2,3*10-5 кг/м3;

1,09948?0,22328/100 = 0,00245 кг/м3.


Таким образом, расчеты показали, что парциальная плотность кислорода находится выше ПДЗ, а токсичных газов - ниже.


Рис. 14. Схема газообмена в помещении в момент времени 11 минут


На 11 минуте горения газообмен протекает со следующими показателями: приток холодного воздуха составляет 3,26 кг/с, а отток нагретых газов из помещения - 10,051 кг/с.

В верхней части дверного проема идет отток задымленных нагретых газов из помещения, плоскость равных давлений находится на уровне 1,251 м, что ниже уровня рабочей зоны.

Вывод: на основании результатов расчетов дать подробную характеристику оперативной обстановки на момент прибытия пожарных подразделений, предложить меры по проведению безопасной эвакуации людей.


Общий вывод по работе


Сделать общий вывод по работе, включающий:

а) краткое описание объекта;

b) общая характеристика динамики ОФП при свободном развитии пожара;

c) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d) анализ срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e) характеристика оперативной обстановки на момент прибытия пожарных подразделений, предложения по проведению безопасной эвакуации людей;

f) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

Литература


1.Терентьев Д.И. Прогнозирование опасных факторов пожара. Курс лекций / Д.И. Терентьев, А.А. Субачева, Н.А. Третьякова, Н.М. Барбин // ФГБОУ ВПО «Уральский институт ГПС МЧС России». - Екатеринбург, 2012. - 182 с.

2.Кошмаров Ю.А. Прогнозирование ОФП в помещении: Учебное пособие / Ю.А. Кошмаров/ - М.: Академия ГПС МВД России, 2000. -118 с.

Федеральный закон Российской Федерации от 22 июля 2008 г. №123-ФЗ «Технический регламент о требованиях пожарной безопасности».

Приказ МЧС РФ от 10.07.2009 №404 (с изменениями от 14 декабря 2010 г.) «Об утверждении методики определения расчетных величин пожарного риска на производственных объектах». - Пожаровзрывобезопасность. - №8. - 2009. - Стр. 7-12.

Приказ МЧС РФ от 30.06.2009 №382 (с изменениями от 11 апреля 2011) «Об утверждении методики определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности». - Пожарная безопасность №3. - 2009. - Стр. 7-13.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

В начальной стадии пожара наблюдается специфический режим газообмена. Особенности этого режима заключаются в том, что процесс газообмена идет в одном направлении через все имеющиеся проемы и щели. Поступление воздуха в помещение из окружающей среды в этот период развития пожара совсем отсутствует. Лишь спустя некоторое время, когда средняя температура среды в помещении достигает определенного значения. Процесс газообмена становится двусторонним, т.е. через одни проемы из помещения вытекают нагретые газы, а через другие поступает свежий воздух. Продолжительность начальной стадии пожара, при которой наблюдается «односторонний» газообмен, зависит от размеров проемов.

При условии отсутствия поступление воздуха извне в дифференциальных уравнениях пожара можно отбросить члены, содержащие расход воздуха (G B = 0.).

Кроме того, будем рассматривать негерметичные помещения, в которых среднее давление среды остается практически постоянным, равным давлению наружного воздуха, так что с достаточной точностью можно принять, что:

где r 0 , Т 0 – плотность и температура среды перед началом пожара; r m , Т m – соответственно средние значения плотности и температуры среды в рассматриваемый момент времени; Р m – среднее давление в помещении.

Интервал времени, в течении которого наблюдается односторонний газообмен, является относительно небольшим. Средняя температура и концентрация кислорода в помещении изменяются за этот промежуток времени незначительно. По этой причине можно принять, что величины h, D, R в этой стадии пожара остаются неизменными. Кроме того, примем, что п 1 = п 2 = n 3 = т = 1 и V = const.

С учетом сказанного, уравнения пожара для начальной его стадии в помещении с малой проемностью, принимают следующий вид:

; (2)

, (4)

, (5)

(6)

В дальнейшем принимается еще одно допущение:

с р = с рВ = const. (7)

Для того чтобы получить аналитическое решение этих уравнений, используется прием, заключающийся в следующем. Поскольку рассматривается процесс развития пожара на относительно малом промежутке времени, то можно принять, что отношение теплового потока в ограждении к тепловыделению есть величина постоянная, равна своему среднему значению на этом интервале:

(8)

где Q пож = ψ η Q н;

τ * – время окончания начальной стадии пожара;

φ – коэффициентом теплопотерь.

Из уравнения баланса энергии (3) можно определить расход выталкиваемых газов из помещения.

С учетом уравнений (3) и (8) расход выталкиваемых газов в каждый момент времени определяется по формуле:



(9)

Следовательно, для начальной стадии пожара с учетом условия (1) расход выталкиваемых газов определяем по формуле:

(10)

Таким образом, уравнения пожара для начальной его стадии в помещении примут вид:

, (11)

, (12)

, (13)

. (14)

Эти уравнения представляют собой частный случай основной (неупрощенной) системы уравнений пожара.

Зависимость среднеобъемной плотности от времени можно описать следующим выражением:

, (15)

тогда процесс нарастания средней температуры среды в помещении описывается формулой:

, (16)

где

где b Г – ширина фронта пламени, м;

,

где – теплота сгорания, Дж·кг -1 ;

с p – теплоемкость газовой среды в помещении, Дж∙кг -1 ·K -1 (1,01);

ρ 0 , Т 0 – начальное значение плотности (кг·м -3) и температуры (К) соответственно;

V – свободный объем помещения, м 3 ;

Из дифференциального уравнения (12), описывающего процесс снижения парциальной плотности кислорода в помещении, находим парциальную плотность кислорода в зависимости от времени:

. (17)

где ρ 0 = 0,27 кг·м -3 , ρ 01 / ρ 0 = 0,23.

С использованием дифференциального уравнения (13) определим среднюю парциальную плотность токсичного газа в зависимости от времени по формуле:

, (18)

где – пороговая плотность, кг·м -3 .

Наконец рассмотрим дифференциальное уравнение (14), описывающее изменение критической плотности дыма в помещении. Разделим переменные в этом уравнении и затем, интегрируя с учетом начального условия, получаем формулу для определения оптической концентрации дыма:



, (19)

где .

Значение μ * зависит от свойств горючего материала (ГМ). Например, для древесины при ее горении на открытом воздухе μ * ≤ 5 Нп · м -1 .

Оптическая плотность дыма связана с дальностью видимости следующим соотношением:

.

где l вид – дальность видимости, м.

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Используя основные теоретические положения рассчитать согласно варианту исходных данных (таблица 3):

а) парциальную плотность кислорода в зависимости от времени;

б) среднюю парциальную плотность токсичного газа;

в) оптическую концентрацию дыма;

г) оптическую плотность дыма.

2. Занести в таблицу полученные промежуточные и конечные результаты.

3. Подготовить отчет.

1) Краткие теоретические сведения.

2) Исходные данные.

3) Количественные показатели произведенных расчетов.

4) Ответы на контрольные вопросы.

Работа выполняется на листах формата А4, печатным текстом, в виде пояснительной записки содержащей краткую реферативную часть, требуемые расчеты и графики. Оформление работы должно соответствовать общим требованиям, предъявляемым к оформлению работ студентов в университете.

Таблица 3 – Данные по вариантам для выполнения расчета начальной стадии пожара

№ варианта Размер помещения t о, о С Высота рабочей зоны, h , м Горючее вещество Масса, кг Форма поверхности горения (таблица 4) Период развития пожара, мин Ширина фронта пламени, м Площадь горения, F , м 2
20х10х5 1,7 бензин в
15х15х6 ацетон в
10х30х4 1,8 древесина б
20х20х4 2,1 полиэтилен б
40х10х3 1,8 резина б
25х30х5 2,0 турбинное масло в
30х10х5 1,8 лен б
20х20х6 2,5 дизельное топливо в
40х10х5 2,2 хлопок а
30х8х4 1,9 хлопок а
20х10х4 2,3 бензин в
20х20х3 1,8 толуол а
30х6х3 1,7 древесина а
30х10х5 2,4 полиэтилен а
20х10х6 2,0 резина а
25х10х4 1,8 турбинное масло в
30х10х5 2,2 лен а
15х15х4 2,0 дизельное топливо в
30х10х4 2,3 пенопласт а
30х20х5 2,0 хлопок а
30х30х4 1,8 бензин в
40х10х4 2,0 толуол а
25х10х3 2,2 древесина а
25х25х4 2,0 полиэтилен б
30х20х3 2,0 резина а
25х25х4 1,8 турбинное масло в
40х10х5 2,4 лен а
20х20х6 2,0 дизельное топливо в
25х10х4 1,8 пенопласт б
30х20х6 2,2 хлопок а

Таблица 4 – Форма поверхности горения

Таблица 5 – Средняя скорость выгорания, низшая теплота сгорания, дымообразующая способность, удельное потребление газов и линейная скорость распространения пламени веществ и материалов

Вещества и материалы Y F , удельная массовая скорость выгорания, х10 –3 , кг м –2 с –1 Низшая теплота сгорания, Q , кДж·кг –1 Дымообразующая способность, D m , м 2 ·кг –1 Удельное потребление газов, L , кг·кг –1 Линейная скорость распространения пламени, J·10 2 , м/с
Бензин 61,7 0,25 0,45
Ацетон 59,6 0,26 0,44
Дизельное топливо 42,0 0,4
Турбинное масло 0,282 0,5
Толуол 0,388
Древесина 39,3 1,15
Резина 11,2 1,7-2
Пенопласт ПВХ-9 2,8 0,37
Полиэтилен 10,3 0,32
Хлопок 2,4 2,3 4,2
Лен 21,3 33,7 1,83

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Стадии пожара и их характеристики.

2. Процесс горения и основными условиями.

3. Массовая скорость выгорания и от чего зависит.

4. Линейная скорость распространения горения

5. Температура пожара в ограждениях и на открытых пространствах

6. Дым – это.

7. Развитие пожара и периоды

ЛИТЕРАТУРА

1. Кошмаров Ю.А. Прогнозирование опасных факторов пожара в помещении. Учебное пособие. АГПС МВД РФ, М. - 2000.

2. Применение полевого метода математического моделирования пожаров в помещениях. Методические рекомендации. ФГУ ВНИИПО МЧС России, 2003.

3. Пузач С.В. Методы расчета тепломассообмена при пожаре в помещении и их применение при решении практических задач пожаровзрывобезопасности. Монография. - М.: Академия ГПС МЧС России, 2005. - 336 с.

4. Пузач С.В., Смагин А.В., Лебедченко О.С., Абакумов Е.С. Новые представления о расчете необходимого времени эвакуации людей и об эффективности использования портативных фильтрующих самоспасателей при эвакуации на пожарах. Монография. - М.: Академия ГПС МЧС России, 2007. 222 с.

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ

СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ВОРОНЕЖСКИЙ ИНСТИТУТ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНЖЕНЕРНОЙ ГРАФИКИ

Учебное издание

Специальность 280705.65 – «Пожарная безопасность»

Прогнозирование опасных факторов пожара в помещении

Д.В. Русских

ВОРОНЕЖ 2013

УДК 536.46+614.841

ББК 24.54+31.31+38.96

Издано по решению методического совета ФГБОУ ВПО Воронежский институт ГПС МЧС России

Рецензенты:

доцент кафедры уравнений в частных производных и теории вероятностей,

кандидат физико-математических наук, доцент А.С. Рябенко (ВГУ);

доцент кафедры физики,

кандидат физико-математических наук А.Б. Плаксицкий (ВИ ГПС МЧС России)

Р83 Русских Д.В.

Прогнозирование опасных факторов пожара в помещении. Практикум с вариантами заданий для выполнения курсовой работы по дисциплине

«Прогнозирование опасных факторов пожара» для курсантов и студентов очной формы обучения и слушателей факультета заочного обучения.

Специальность 280705.65 – «Пожарная безопасность». Д.В. Русских, С.А.

Донец [Воронежский институт ГПС МЧС России]. – Воронеж, 2013. – 83 с.

В практикуме приведены краткие теоретические сведения, примеры решения типовых задач, в том числе с применением персонального компьютера, варианты заданий и методические указания для выполнения курсовой (контрольной) работы.

Практикум предназначен для курсантов и студентов очной формы обучения и слушателей факультета заочного обучения по специальности

280705.65 – «Пожарная безопасность».

© Русских Д.В., Донец С.А., 2013

© ФГБОУ ВПО Воронежский Институт ГПС МЧС России, 2013

Введение

1.1 Основные понятия

1.2 Описание интегральной математической модели пожара в помещении

1.3 Описание дифференциальной математической модели пожара в помещении

1.4 Описание зонной математической модели пожара в помещении

2. Расчет динамики опасных факторов пожара в помещении

2.1 Исходные данные

2.2 Использование интегральной математической модели

2.3 Определение критической продолжительности пожара и времени блокирования путей эвакуации

2.6 Использование зонной математической модели

3. Методические указания для выполнения курсовой (контрольной) работы

3.1 Цели и задачи

3.2 Выбор темы курсовой работы и индивидуального варианта задания

3.4.1 Исходные данные

3.4.2 Описание интегральной и зонной математических моделей развития пожара в помещении

3.4.3 Расчет динамики опасных факторов пожара в помещении с использованием интегральной математической модели

3.4.4 Определение критической продолжительности пожара и времени блокирования эвакуационных путей

3.4.5 Прогнозирование обстановки на пожаре к моменту прибытия первых подразделений на тушение

3.4.6 Расчет огнестойкости ограждающих строительных конструкций с учетом параметров реального пожара

3.4.7 Расчет динамики опасных факторов пожара в помещении с использованием зонной математической модели

3.5 Требования к оформлению курсовой (контрольной) работы

Литература

Приложение А

Приложение Б

Введение

Настоящий практикум предназначен для курсантов и студентов второго курса, а также слушателей третьего курса факультета заочного обучения специальности 280705.65 «Пожарная безопасность» ФГБОУ ВПО Воронежский институт ГПС МЧС России. Написан в соответствии с рабочей программой по курсу «Прогнозирование опасных факторов пожара»,

разработанной согласно требованиям Федерального Государственного образовательного стандарта высшего профессионального образования.

В практикуме содержится теоретический материал и подробно разобранные практические задачи для подготовки и проведения практических занятий по двум темам: интегральная математическая модель пожара в помещении, зонная математическая модель пожара в помещении.

Приведены варианты заданий и методические указания для выполнения курсовой работы курсантами и студентами второго курса и контрольной работы слушателями третьего курса факультета заочного обучения.

Практикум написан на высоком инженерном уровне, доступным для восприятия языком. Может быть использован обучающимися для самостоятельного изучения соответствующего материала, выполнения курсовой и контрольной работы, а также для подготовки к зачету по дисциплине «Прогнозирование опасных факторов пожара» в четвертом семестре у курсантов и студентов очной формы обучения, во время итоговой сессии на третьем курсе у слушателей факультета заочного обучения.

Кроме того, практикум должен помочь обучающимся в тех случаях,

когда они по каким-либо причинам отсутствовали на занятиях или не успели что-то записать, а также в тех случаях, когда им не хватило времени для восприятия материала во время занятия.

1. Методы прогнозирования опасных факторов пожара в помещении

1.1. Основные понятия

Опасным фактором пожара называется фактор, воздействие которого приводит к травме, отравлению или гибели человека, а также к материальному ущербу.

В соответствии со статьей 9 федерального закона № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» от 22 июля 2008 г. к опасным факторам пожара, воздействующим на людей и имущество, относятся:

1) пламя и искры;

2) тепловой поток;

3) повышенная температура окружающей среды;

4) повышенная концентрация токсичных продуктов горения и термического разложения;

5) пониженная концентрация кислорода;

6) снижение видимости в дыму.

К сопутствующим проявлениям опасных факторов пожара относятся:

1) осколки, части разрушившихся зданий, сооружений, строений, транспортных средств, технологических установок, оборудования, агрегатов, изделий и иного имущества;

2) радиоактивные и токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества;

3) вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;

4) опасные факторы взрыва, происшедшего вследствие пожара;

5) воздействие огнетушащих веществ.

В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

2) при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;

3) при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);

4) при оценке фактических пределов огнестойкости;

5) для многих других целей.

С научных позиций опасные факторы пожара являются физическими понятиями и, следовательно, каждый из них представлен в количественном отношении одной или несколькими физическими величинами. С этих позиций и рассмотрим вышеперечисленные ОФП.

Первый опасный фактор – пламя и искры. Пламя - это видимая часть пространства (пламенная зона), внутри которой протекает процесс окисления

(горения) и происходит тепловыделение, а также генерируются токсичные газообразные продукты, и поглощается забираемый из окружающего пространства кислород. Кроме того, в границах этой части пространства

(зоны) образуется специфическая дисперсная среда, особые оптические свойства которой обусловлены процессами рассеяния энергии световых волн вследствие их многократного отражения от мельчайших твердых (и жидких)

частиц. Этот процесс образования дисперсной среды, ухудшающей видимость, принято называть процессом дымообразования.

По отношению к объему помещения, заполненному газом, пламенную зону можно рассматривать, с одной стороны, как «источник» тепловой энергии и токсичных продуктов горения, а также мельчайших твердых

(жидких) частиц, из-за которых ухудшается видимость. С другой стороны,

как «сток», в который уходит кислород из помещения.

В связи с вышесказанным содержание понятия «пламя» представлено в количественном отношении следующими величинами:

1) характерными размерами пламенной зоны (очага горения), например площадью горения (площадью пожара) F r , м2 ;

2) количеством сгорающего (окисляемого) за единицу времени горючего материала (ГМ) (скоростью выгорания) , кг·с-1 ;

3) мощностью тепловыделения Q пож , Вт; Q пож = Q Р Н , где Q Р Н - теплота сгорания, Дж·кг-1 ;

4) количеством генерируемых за единицу времени в пламенной зоне токсичных газов L i , кг·с-1 , где L i - количество i -го токсичного газа,

образующегося при сгорании единицы массы ГМ;

5) количеством кислорода, потребляемого в зоне горения L 1 , кг·с-1 , где

L 1 - количество кислорода, необходимое для сгорания (окисления) единицы массы ГМ;

6) оптическим количеством дыма, образующегося в очаге горения D ,

Непер·м2 ·с-1 , где D - дымообразующая способность горючего материала,

Непер·м2 ·кг-1 .

Второй опасный фактор пожара - тепловой поток.

Третий опасный фактор - повышенная температура окружающей среды. Температура среды, заполняющей помещение, является параметром состояния, он обозначается Т, если используется размерность Кельвин или t,

если используется размерность градусы Цельсия.

Четвертый опасный фактор - повышенная концентрация токсичных продуктов горения и термического разложения. Этот фактор количественно характеризуется парциальной плотностью (или концентрацией) каждого токсичного газа. Парциальная плотность компонентов газовой среды в помещении является параметром состояния. Обозначается ρ, размерность -

кг·м-3 . Сумма парциальных плотностей всех компонентов газовой среды равна

плотности газа. Концентрацией токсичного i -го газа обычно называют отношение парциальной плотности этого газа i к плотности газа, т. е.

i i .

Если умножить отношение i на 100 процентов, то получим значение

концентрации продукта в процентах.

Пятый опасный фактор – пониженная концентрация кислорода в помещении. Этот фактор количественно характеризуется значением парциальной плотности кислорода 1 или отношением ее к плотности газовой среды в помещении, т. е.

x 1 1 .

Шестой опасный фактор пожара – снижение видимости в дыму. Этот фактор количественно представляют параметром, называемым оптической концентрацией дыма. Этот параметр обозначают буквой µ, его размерность -

Непер·м-1 . (Иногда параметр µ называют натуральным показателем ослабления.) Расстояние видимости в дыму l вид и оптическая концентрация дыма связаны между собой простым соотношением

Вышеприведенные величины: температура среды, парциальные плотности (концентрации) токсичных газов и кислорода, оптическая плотность дыма - являются параметрами состояния среды, заполняющей помещение при

пожаре. Они характеризуют свойства газовой среды в помещении. Начиная с возникновения пожара, в процессе его развития эти параметры состояния непрерывно изменяются во времени, т.е.

T f 1 , 1 f 2 , f 3 , O 2 f 4 .

Совокупность этих зависимостей составляет суть динамики ОФП.

При рассмотрении воздействия ОФП на людей используются так называемые предельно допустимые значения (ПДЗ) параметров состояния среды в зоне пребывания людей (рабочей зоне). Предельно допустимые значения ОФП получены в результате обширных медико-биологических исследований, в процессе которых установлен характер воздействия ОФП на людей в зависимости от значений их количественных характеристик.

Следует подчеркнуть, что в условиях пожара имеет место одновре-

менное воздействие на человека всех ОФП. Вследствие этого опасность многократно увеличивается. Предельно допустимые значения ОФП указаны в ГОСТ 12.1.004-91 и СП 11.13130.2009 (таблица 1.1).

Таблица 1.1. Предельно допустимые значения ОФП

ОФП, обозначение, размерность

Температура, t , °С

Парциальная плотность, кг·м-1 :

кислорода

оксида углерода

диоксида углерода

хлористого водорода

цианистого водорода

окислов азота

сероводорода

Оптическая плотность дыма, µ, Непер·м

2,38/l пдв *

Тепловой поток, q , Вт/м2

* l пдв - предельно допустимая дальность видимости, м.

Случайные статьи

Вверх