Что такое мониторинг атмосферного воздуха. Глава V

Выходные данные сборника:

ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ АТМОСФЕРНОГО ВОЗДУХА

Мазулина Олеся Владимировна

студент, ВолгГАСУ, г. Волгоград

Полонский Яков Аркадьевич

канд. техн. наук, доцент каф. БЖДТ, ВолгГАСУ, г. Волгоград

ECOLOGICAL MONITORING OF ATMOSPHERIC AIR

Mazulina Olesia Vladimirovna

student, VolgGASU, Volgograd

Polonskiy Iakov Arkadievich

Candidate Technical , Associate Professor ofVolgGASU, Volgograd

АННОТАЦИЯ

Проблема загрязнения окружающей среды, в особенности воздушного бассейна не становится менее актуальной с течением времени. Основой для ее решения служит развитие и совершенствование систем экологического мониторинга, осуществляемого на современной организационной и технологической базе. Основными направлениями методического обеспечения являются анализ пылевого загрязнения и анализ наличия загрязняющих веществ в воздухе. Для решения этих задач необходима адекватная современная приборно-аппаратная база.

ABSTRACT

The problem of environmental pollution, particularly air pollution does not become less relevant with the passage of time. The basis for its decision serves as a development and perfection of systems of ecological monitoring, carried out on modern organisational and technological basis. The main directions of methodological support are the analysis of dust pollution and the availability of polluting substances in the air. To solve these tasks we need adequate to the modern instrument-hardware base.

Ключевые слова: загрязнение воздушной среды; экологический мониторинг; приборы и методы мониторинга.

Keywords: air environmental pollution; ecological monitoring; instrument-hardware base of monitoring.

Экологический мониторинг атмосферного воздуха (ЭМВ) представляет собой систематическое измерение количества загрязняющих веществ (ЗВ) в атмосфере с целью оценки: во-первых,его качества и, во-вторых – степени воздействия ЗВ на чувствительные объекты (например, людей, животных, растения и произведения искусства).Косвенной целью ЭМВтакже является локализация местоположения и идентификация источника загрязнения воздуха (т. н. казуальный анализ). Физически, ЗВ можно классифицировать на газообразные и твердофазные дисперсные, а химически – на активные, обладающие вредным воздействием, и пассивные. С приборно-аппаратной условной точки зрения, удобной для описания построительных схем массового ЭМ – на «пыль» и «газы».

Критериальной основой ЭМ, в его «небытовом» варианте, является комплекс нормативов и указаний, принятых на международном, государственном, муниципальном, корпоративномуровнях. Из всего множества химических веществ, биологических и физических компонентов воздуха (за исключением азота и кислорода), объектом ЭМВ, очевидно, являются те, чье воздействие, на основании эмпирических, как правило, наблюдений, приводит к негативным последствиям. Соответственно, предельно допустимые концентрации (т. н. ПДК) этих ЗВ также установлены из многолетнего опыта наблюдений и специально проводимых исследований.

Текущая концентрация ЗВ в данной точке атмосферы формируется под воздействием баланса поступлениявредных веществи их рассеивания в воздухе. Понятно, что как приток ЗВ, так и динамика их рассеивания носят нестационарный характер. Однако, эта нестационарность подчиняется определенным закономерностям - в одной и той же зоне наблюдений фиксируются колебания концентраций, причем наиболее упорядоченная картина характерна для дневных, недельных и годовых периодов.

Учитывая вышесказанное, проведение ЭМВ должно базироваться на сеть станций мониторинга, обеспечивающих адекватность его реализации. Основными требованиями являются: достаточная плотность размещения станций, наличие аппаратного комплекса средств контроля, обеспечивающего успешное фиксирование основных ожидаемых ЗВ, наличие соответствующей нормативно-методической базы и единого операционного центра, обеспечивающего своевременное и полноценное решение задач ЭМВ. Применительно к урбано-индустриальной среде, это означает, чторазвертываниесети станций ЭМВ должно производиться применительно к сформировавшемуся ландшафту застройки, а также во всех без исключения ранжированных по уровню загрязнения зонах – от наиболее чистых парковой, зон отдыха, зоны спальных районов, делового центра, зон транспортных потоков, до промышленных особо загрязняющих зон.

Примером такого решения системы ЭМВ является ГПБУ «Мосэкомониторинг» . Она развернута в виде соответствующего числа автоматических станций контроля загрязнения атмосферы, на которыхкруглосуточно, в непрерывном режиме, измеряются концентрации 23-х химических веществ (21 ЗВ контролируемых в соответствии с рекомендациями Всемирной организации здравоохранения, и также углекислого газа и кислорода). Параллельно измеряются метеорологические параметры, определяющие условия рассеивания ЗВ в атмосфере (скорость и направление ветра, температура, давление, влажность, вертикальная компонента скорости ветра).

Действующая система ЭМВ, таким образом, обеспечивает решение следующих задач:

  • контроль за соблюдением государственных и международных стандартов качества атмосферного воздуха;
  • получение объективных исходных данных для разработки природоохранных мероприятий, градостроительного планирования и планирования развития транспортных систем;
  • оценка эффективности природоохранных мероприятий.

Описанная система ЭМВ может также использоватьсядля развертывания систем предупреждения о резком повышении уровня загрязнения воздуха в интересах ГО и ЧС; а также для поддержки клинических и академических исследованийвоздействия на здоровье человека загрязнения воздуха.

Методическая база ЭМВ, в соответствии с принятой выше классификацией, должна обеспечивать оценку запыленности АВ и оценку загрязненности его ЗВ.

Одним из основных загрязнителей АВ пылью служат промышленные предприятия. И здесь, хорошо изученным и давно используемым на практике методом оценки запыленности воздуха является весовой метод, суть которого состоит в определении привеса при пропускании через фильтр определенного объема исследуемого воздуха.

В настоящее время, как правило, необходимо наряду с концентрацией пыли знать также размер частиц (дисперсность) пыли, и, кроме того,количество пылинок, содержащихся в единице объема воздуха. С этой цельюиспользуютметод непосредственного наблюдения и подсчета с применением микроскопа или использованием различных лучевых измерителей (светового и радио-диапазона).

Для качественного и количественного определения содержания в АВ ЗВ применяются газоанализаторы и хроматографы различных конструкций и производителей. Газоанализаторы, как правило, специализированы для использования в специфических условиях применения: таких, какввоздуха рабочей зоны, газовых промышленных и вентиляционных выбросах, автомобильных выбросах, технологических газовых средах, свободных зонах природных и урбанистических ландшафтов.

В зависимости от конкретного назначения, газоанализаторы контролируют определенные наборы ЗВ – от одного (озон, или CO) до нескольких (H 2 S, SO 2 , NO, NO 2 , NH 3 , HCl, Cl 2 , O 2 и более) и основаны на различных физических принципах.

Распространены хемилюминесцентные газоанализаторы (например, озона), ИК-оптические газоанализаторы (контроль оксида и диоксида углерода), интегральные газоанализаторы, позволяющие использовать любую комбинацию имеющихся газовых датчиков. Такие газоанализаторы имеют блоки обработки информации и предназначены для подключения до 32 и более измерительных-модулей. Помимо этого, современные газоанализаторы имеют модули, позволяющих проводить их автокалибровку, осуществлять управление от внешних устройств, в т. ч. удаленным способом, обеспечивают как хранение значительных объемов данных, так и вывод информации на внешние ЭВМ.

Следует отметить, что, нарядус безусловными достоинствами (возможность селективного детектирования определяемого вещества, портативность), газоанализаторы имеют и недостатки, главный из которых – невозможность фиксировать изменения качественного состава анализируемой воздушной среды при расширении ассортимента загрязнителей .

Другим распространенным классом приборов для анализа ЗВ являются хроматографы. Портативные газовые хроматографы в значительной степени лишены недостатков, присущих газоанализаторам, хотя и существенно превосходят последние по стоимости. При анализе объектов, представляющих собой микрокомпонентные смеси переменного состава, хроматографии нет альтернативы . В пересчете на стоимость определения одного компонента хроматография имеет очень низкую себестоимость, обладая одновременно высокой селективностью и чувствительностью определения .

Так, использование портативных хроматографов, укомплектованных фотоионизационным детектором, позволяет, без предварительного концентрирования, определять содержание в воздухе полиароматических углеводородов и фталатов. Такие приборы, имея массу до 10 кг, позволяют в мобильном варианте определять многочисленные органические и неорганические вещества при контроле загрязнителей воздушной среды, поиске утечки газов и т. д. непосредственно в вероятных местах аварий и инцидентов. Оперативный контроль органических примесей (ацетон, бензол, гексан, толуол, бутилацетат, этилбензол, ксилолы и т. д.) на уровне ПДК в атмосферном воздухе, воздухе рабочей зоны, при обнаружении утечки технологического или транспортируемого газа такжеможет проводиться с использованием газового переносного хроматографа, в случае, если он снабжен высокочувствительной детектирующей системой, позволяющей анализировать пробу без предварительного обогащения.

Некоторые переносные приборы предназначены для определения летучих органических соединений не только в воздухе, но и в воде и почве и могут быть использованы при проведении контроля окружающей среды, а не только воздуха рабочей зоны, производства.Как правило, они комплектуются удлиненным зондом для забора пробы, что существенно повышает мобильность и точность позиционирования проботбора.

Многие современные приборы базируются на использовании миниатюрныхфотоионизационных детекторов, что расширяет спектр применения и точность определения ЗВ.

Существуют и полифункциональные с точки зрения оперирования приборы, позволяющие осуществлять ввод пробы как шприцем, так и через дозирующее устройство с помощью встроенного насоса; они могут быть снабжены несколькими капиллярными колонками и системой обратной продувки. Работа таких приборов возможна в трех режимах. Предусмотрен режим работы как для неквалифицированного оператора (цикл запрограммированных анализов), так и для квалифицированного, которому открыт доступ к изменению различных параметров прибора. С помощью встроенного микропроцессора можно рассчитать до 50 пиков и провести калибровку по трем точкам для 25 компонентов.

Более сложные, и, как правило, точные приборы выполняются в стационарном исполнении. Они громоздки и могут использоваться лишь в лабораториях, в т. ч. передвижных, что заметно повышает их мобильность. Такие приборы предназначены, например,для качественного и количественного анализа сложных смесей органических и неорганических веществ с температурой кипения до 300°С.

Конечно, портативные приборы всегда имеют более жесткие ограничения на их использование в анализе, чем приборы в стационарной аналитической лаборатории. Тем неменее, удобство использования портативных хроматографов состоит еще и в том, что при отборе пробы не нужно входить в зону, содержащую ЗВ, если они снабжены устройствами для проведения дистанционного анализа.

Для деятельности аналитической лаборатории, хроматографический метод в контроле загрязнителей воздушной среды не имеет альтернативы, т. к. его использование позволяет определять как органические соединения различного строения, так и широкий спектр неорганических соединений. Решающую роль в этом сыграла практически полная автоматизация анализа, включая стадию пробоподготовки.

В настоящее время серийно освоен выпуск различных приборов и установок для анализа аэрозолей: радиоизотопные пылемеры, позволяющие проводить определение концентраций пыли вдиапазоне 1–500 мг/м3;комплексы, выполняющие автоматическое измерение и запись содержания в АВ пыли и сажи, автоматические пробоотборники, производящие отбор аэрозоля из воздуха для определения концентраций прямым методом, дозиметры пыли, обеспечивающие отбор проб аэрозоля для определения концентраций прямым методом при запыленности воздуха более 15 мг/м 3 .

Таким образом, современная методическая и приборная база ЭМВ достаточно хорошо отработана и предоставляет полноценную возможность для создания эффективно действующей системы ЭМВ. Конечно, методы анализа ЗВ достаточно сложны и дорогостоящи, а адекватного им развития пока не имеют системы анализа пылевых загрязнений. Тем не менее, проблема реализации полномасштабных по охвату систем ЭМВ в настоящее время скорее перешла в область системной организации из области поиска и обеспечения доступных инженерно-технических решений. Следующей задачей развития этих систем является обеспечение формирования достаточного уровня мотивации на всех уровнях управленческого персонала, как в государственно-муниципальном, так и производственно-корпоративном сегментах.

Список литературы:

  1. Шабельников В.Н., Лихачева С.В., Немова К.А. Эколого-аналитический контроль промышленных выбросов // Трубопроводный транспорт нефти.2010.№ 2. С. 62
  2. Экоаналитический контроль : методические указания. Самара: Издательство "Самарский университет", 1999

Рассмотрим системный подход к анализу данных наблюдений в различных программах мониторинга и выявим, какие особенности вносит фактор географического масштаба наблюдений в исполнение той или иной программы.

Мониторинг источников

Состав газовых выбросов в источнике полностью определяется в качественном и количественном отношениях технологией и ее совершенством. Уровни концентраций ЗВ в источнике превышают ПДК СС в десятки тысяч раз. Аналитическая задача не сложна, поскольку состав известен и достаточно стабилен, а уровни концентраций высоки и не требуют предварительного концентрирования пробы. Все трудности связаны с взятием представительной пробы из источника, поскольку газовые потоки часто гетерогенны, нагреты до высокой температуры и неоднородны по времени и диаметру газохода. Здесь перспективны неконтактные методы анализа, не требующие взятия проб. Данный уровень мониторинга в этом пособии не рассматривается.

Импактный мониторинг

Состав и уровни концентраций в значительной мере (но не полностью) определяются технологиями производств, создающих загрязнение. В данном случае физико-химические процессы в окружающей среде и метеорологические условия начинают играть существенную роль в создании наблюдаемых уровней концентраций ЗВ. Последние иногда превышают ПДК СС в десятки раз. Наблюдается тесная связь между расположением источников, их характеристиками, направлением и скоростью ветра и полями концентраций ЗВ. Наблюдения осуществляются на стационарных, передвижных и подфакельных постах (см. раздел 4.4).

Региональный мониторинг

Значительное удаление от предприятий приводит к тому, что уровни концентраций ЗВ оказываются ближе к фоновым, обычно в пределах ПДК СС или даже ниже. Аналитическая задача усложняется не только вследствие необходимости предварительного концентрирования примесей, но и сильной вариабельности их величин и качественного состава. Мониторинг в этом случае относится к аэроаналити- ческим задачам, в которых роль воздушных течений исключительно велика. Необходим учет всей региональной деятельности, включая и сельскохозяйственную, при этом прямую связь между загрязнением атмосферы и конкретными технологиями установить нелегко. Обычно приходится иметь дело с целым рядом вторичных веществ, возникших в результате фотохимических и биологических процессов.

Региональный мониторинг дает возможность стыковать данные импактного и глобального фонового мониторинга, а также позволяет выявить основные пути распространения ЗВ на большие расстояния. Непосредственные сведения о состоянии загрязнения атмосферы на региональном уровне могут быть получены по данным наблюдений в небольших населенных пунктах, расположенных вдали от крупных городов, при условии, что источники загрязнения воздуха в этих пунктах отсутствуют. Сведения о региональном фоновом загрязнении атмосферы получают также из данных сети постов наблюдений за трансграничным переносом загрязняющих веществ.

Наблюдения за трансграничным переносом загрязняющих веществ проводятся в рамках «Совместной программы наблюдения и оценки распространения загрязнителей воздуха на большие расстояния в Европе - ЕМЕП» (Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe - ЕМЕР) на четырех станциях ЕМЕП, расположенных в СевероЗ-ападном регионе и Центральной части России. Работы по программе ЕМЕП предусматривают регулярный анализ содержания в атмосфере и атмосферных осадках химических соединений, определяющих кислотно-щелочной баланс, а также оценку концентраций и нагрузок соединений серы и азота в СевероЗ-ападном и Центральном районах России.

По данным наблюдений доминирующим кислотным анионом для российских станций ЕМЕП является сульфат-ион. Средние величины концентраций и выпадений ЗВ, определяющих трансграничное загрязнение, относительно невелики и по существующим представлениям не могут вызвать заметных негативных экологических эффектов.

Для осуществления программы мониторинга кислотных выпадений и их воздействия на состояние природных экосистем в восточной части азиатского континента и архипелагов в западной части Тихого океана создана «Сеть мониторинга кислотных осадков в Восточной Азии - EANET» (Acid Depisition Monitoring Network in East Asia). На территории России действуют четыре станции мониторинга, три из которых расположены в Байкальском регионе и одна в Приморском крае. Постоянные измерения на станциях EANET на территории России проводятся с 2001 г., по данным наблюдений на всех российских станциях EANET в воздухе среди газовых примесей преобладало содержание S0 2 .

Снежный покров как индикатор регионального загрязнения

воздуха

В региональных системах мониторинга атмосферного воздуха большое внимание уделяется наблюдениям за степенью загрязнения снежного покрова. Это и понятно, поскольку его загрязнение исключительно четко коррелирует с загрязнением атмосферного воздуха и несет информацию о «сухих» и «мокрых» выпадениях.

На примере свинца, ртути и меди установлены достоверные корреляции, выраженные следующими уравнениями регрессии:

IPbJ в почве = 1324 [РЬ] в атмосферном воздухе + 6,3.

ПДК РЬ в воздухе (0,3 мкг/м 3) соответствует концентрация в почве 400 мг/кг;

[Си] в почве = 526 [Си] в атмосферном воздухе + 457.

ПДК Си в воздухе (2,0 мкг/м 3) соответствует концентрация в почве 1500 мг/кг;

В почве = 1,3 в атмосферном воздухе + 0,01;

ПДК Hg в воздухе (0,3 мкг/м 3) соответствует концентрация в почве 0,4 мг/кг.

В настоящее время в нашей стране организована система мониторинга снежного покрова, функционирующая на базе сети снегомерной съемки. Последняя проводится Росгидрометом как часть программы получения данных для Государственного водного кадастра (ГВК), одна из целей которого - учет всех запасов поверхностных вод страны.

Снегомерная съемка издавна использовалась для определения запасов влаги в почве, что необходимо знать при сельскохозяйственных работах. На территории России ранее функционировало около семи тысяч снегомерных пунктов, поэтому придание им новой функции - измерения концентрации приоритетных ЗВ - стало совершенно естественным дополнением к их работе.

Достоинства мониторинга снежного покрова состоят в следующем:

  • отбор проб весьма прост и не требует специального оборудования;
  • послойный отбор проб позволяет определить историю загрязнения воздушной среды на протяжении всего снежного сезона;
  • снег самым естественным образом обеспечивает концентрирование примесей по сравнению с воздушной средой, что упрощает последующую задачу анализа примесей;
  • только одной пробы на максимуме влагосодержания достаточно, чтобы получить среднеинтегральные концентрации приоритетных примесей за снежный период;
  • мониторинг снежного покрова дает возможность оценить величину трансграничного переноса серы и азота аммонийного.

Из семи тысяч упомянутых пунктов снегомерной съемки 560 производят химический мониторинг. Плотность сети в европейской части России - один пункт на 8000 км 2 , в азиатской части - один пункт на 30 тыс. км 2 . Мониторинг охватывает практически всю площадь РФ - 18,3 млн км 2 .

Отбор проб производится один раз в год на максимуме влагосодержания. В различных регионах России время взятия пробы меняется. Например, в Московской области проба берется во 2-й или в 3-й декаде марта, а на острове Диксон - в 3-й декаде апреля или даже во 2-й декаде мая.

Наблюдения организованы за следующими катионами и анионами: Na, К, Mg, Са, NH 4 , СГ, NO3, S0 4 2 “, НСО3 и pH. Около 30 % пунктов дают информацию о тяжелых металлах и полиароматических углеводородах.

Наиболее плотная сеть пунктов наблюдения была создана в густонаселенных регионах, а также вдоль западной границы СССР. Эти пограничные станции были ответственны за осуществление мониторинга трансграничных переносов. Около 40 % пунктов оценивают загрязненность снега вокруг городов, 40 % - контролируют распространение ЗВ от промышленных центров в более чистые регионы, а 20 % - выполняют функции фонового мониторинга. Наибольшая частота проявления закисления снежного покрова (pH = 4,0-5,6) составляет 42 % в регионах Урала и 54 % на Севере Западной Сибири. На севере Европейской территории России закисление отмечается в 26 % случаев.

Границы распространения снежного покрова на обширных территориях можно фиксировать и с помощью космической информации. Для изучения динамики изменения снежных площадей снимки делают повторно, несколько раз. Оперативное картографирование снежного покрова и скорость отступания его границ в весенний период традиционно используются для решения практических задач, прежде всего для гидрологических прогнозов.

Средствами гидрологического моделирования определяется во- дозапас, осуществляется прогноз стока, снегового половодья в бассейнах рек. Ряд параметров для этого - площадь бассейна реки, покрытая снегом, лесистость, распаханность и др. - можно получить дистанционными методами, а некоторые параметры оценить косвенно. Например, зоны, охваченные снеготаянием, выявляются в ближнем ИК-диапазоне спектра, а мощность снежного покрова рассчитывается по ряду последовательных снимков, скорости продвижения границ снегонакопления и температуре воздуха.

Оперативные данные о снегозапасе бассейнов рек служат основой для принятия решений, например, о частичном спуске водохранилищ в период весеннего снеготаяния для предотвращения паводков. В перспективе планируется перейти к определению из космоса мощности снежного покрова средствами микроволновой радиометрической съемки. Тем самым будет возможно для бассейнов крупных рек напрямую получать карты снегозапаса, а имея данные о плотности снега, - водозапаса снежного покрова.

Сезонный снежный покров играет исключительную роль в процессах саморазвития горных регионов, определяет формирование и режим речного стока, оледенения и снежных лавин. Оказывая существенное воздействие на климат, он сам служит индикатором изменения климата.

Карты распределения снежного покрова, полученные по результатам дистанционного зондирования, помогают понять пространственные особенности и взаимосвязи ледниковых систем, оценить вклад разных факторов в формирование ледников и условий их существования. Точную информацию о режиме, распределении и изменчивости снежного покрова необходимо иметь для успешной реализации водохозяйственных мероприятий и регулирования водных ресурсов в бассейнах рек горных территорий при имеющемся дефиците воды в степной зоне.

Снег является хорошим индикатором распространения загрязнений вокруг крупных городов. Загрязняющие вещества выпадают из атмосферы в сухом виде и с осадками и накапливаются в снежном покрове на больших расстояниях от источников - промышленных предприятий, транспортных коммуникаций и т. п. Загрязнение снега влияет на яркость изображения на космических снимках, что дает возможность вместе с результатами обработки проб снега картографировать площади и интенсивность загрязняющих воздействий.

Наиболее ощутимы различия в характеристиках снежного покрова в городах и на фоновых территориях весной, хотя закладываются они еще зимой. При снеготаянии эти контрасты становятся более выраженными за счет накопления ЗВ, вытаивающих из снега (плотность тона соответствует степени загрязненности снега).

Фоновый мониторинг

Рост выбросов ЗВ в атмосферу в результате процессов индустриализации и урбанизации ведет к увеличению содержания примесей на значительном расстоянии от источников загрязнения и к глобальным изменениям в составе атмосферы, что, в свою очередь, может привести ко многим нежелательным последствиям, в том числе и к изменению климата. В связи с этим необходимо определять и постоянно контролировать уровень загрязнения атмосферы далеко за пределами зоны непосредственного действия промышленных источников и тенденцию его дальнейших изменений.

Всемирной метеорологической организацией (ВМО) в 60-е годы XX в. была создана мировая сеть станций мониторинга фонового загрязнения атмосферы (БАПМоН). Ее цель состояла в получении информации о фоновых уровнях концентрации атмосферных составляющих, их вариациях и долгопериодных изменениях, по которым можно судить о влиянии человеческой деятельности на состояние атмосферы.

Нарастающая острота проблемы загрязнения окружающей среды в глобальном масштабе привела к созданию в 1970-е гг. комитета ООН по окружающей среде (UNEP/ЮНЕП), которым было принято решение о создании Глобальной системы мониторинга окружающей среды (ГСМОС), предназначенной для наблюдения за фоновым состоянием биосферы в целом и прежде всего за процессами ее загрязнения.

Станции БАПМоН с 1989 г. переименованы в станции ГСА (Глобальной службы атмосферы ВМО, www.wmo.int), они ответственны за проведение наблюдений и своевременную отправку полученных первичных данных в курирующие их Управления по гидрометеорологии (УГМ) и Главную геофизическую обсерваторию (ГГО) им. А.И. Воейкова.

На УГМ возлагаются задачи обеспечения и контроля работы фоновых станций, а также внедрения на них предлагаемых для сети новых методов контроля фонового состояния атмосферы. ГГО является национальным научно-методическим центром работ по фоновому мониторингу атмосферы в рамках программы ГСА ВМО. В настоящее время на территории РФ в сеть ГСА входят пять фоновых станций - Усть-Вым (республика Коми), Шадзатмаз (Северный Кавказ), Памятная (Курганская обл.), Туруханск (Красноярский край), Хужир (о. Ольхон на Байкале).

Размещение станций

Как правило, фоновые наблюдения по специальной программе фонового экологического мониторинга проводят в биосферных заповедниках и на заповедных территориях. Ранее биосферные заповедники были расположены по всей территории СССР. В них осуществляются оценка и прогнозирование загрязнения атмосферного воздуха путем анализа содержания в нем взвешенных частиц, свинца, кадмия, мышьяка, ртути, бенз(а)пирена, сульфатов, диоксида серы, оксида азота, диоксида углерода, озона, ДДТ и других хлорорганических соединений. Программа фонового экологического мониторинга включает также определение фонового уровня ЗВ антропогенного происхождения во всех средах, включая биоты. Помимо измерения состояния загрязнения атмосферного воздуха на фоновых станциях производятся также метеорологические измерения.

Информация, получаемая с фоновых станций, позволяет оценивать состояние и тенденции глобальных изменений загрязнения атмосферного воздуха. Фоновые наблюдения проводятся также с помощью научно-исследовательских судов в морях и океанах.

Считается, что для всей Земли достаточно 30-40 базовых станций на суше и до 10 - на акватории Мирового океана. Число региональных станций и их расположение должны обеспечивать достаточно быстрое выявление всех негативных тенденций в данном регионе. На территории России находится пять станций комплексного фонового мониторинга (СКФМ), которые расположены в биосферных заповедниках: Воронежском, Приокско-Террасном, Астраханском, Кавказском, Алтайском.

При организации станциий комплексного фонового мониторинга

обращают внимание на то, что их местоположение по своим ландшафтным и климатическим характеристикам должно быть репрезентативным для данного региона. Оценка репрезентативности начинается с анализа климатических, топографических, почвенных, ботанических, геологических и других материалов.

После выбора района необходимо учесть имеющиеся на данной территории источники загрязнения. При наличии крупных локальных источников (административно-промышленных центров с населением более 500 тыс. человек) расстояние до наблюдательного полигона СКФМ должно составлять не менее 100 км. Если это выполнить невозможно, то следует расположить СКФМ таким образом, чтобы повторяемость воздушного потока, обусловливающего перенос загрязняющих веществ от источника в направлении станции, не превышала 20-30 %.

СКФМ включает стационарный наблюдательный полигон и химическую лабораторию. Наблюдательный полигон составляют пробоотборные площадки, гидропосты и в ряде случаев наблюдательные скважины. На полигоне выполняется отбор проб атмосферного воздуха и атмосферных осадков, вод, почв, растительности, а также проводятся гидрометеорологические и геофизические измерения.

Площадка размером 50 х 50 м, на которой размещаются пробоотборные установки и измерительные приборы, называется опорной (базовой) площадкой фоновой станции. Она должна находиться на ровном участке ландшафта с малой степенью закрытости горизонта, вдали от строений, лесных полос, холмов и других препятствий, способствующих возникновению локальных орографических возмущений, т. е. особенностей рельефа местности. Площадку оборудуют установками для отбора проб воздуха, осадкосборниками, газоанализаторами, типовым комплектом метеорологических приборов.

Химическая лаборатория станции располагается на расстоянии не ближе 500 м от опорной площадки, в ней проводят обработку и анализ той части проб, которая не подлежит пересылке в региональную лабораторию: содержание в атмосферном воздухе взвешенных частиц (пыли), сульфатов и диоксида серы; измерение pH, электропроводности, концентрации анионов и катионов в атмосферных выпадениях.

Станции ГСА - фоновые станции подразделяют на три категории: базовые, региональные и континентальные.

Базовые станции следует располагать в наиболее чистых местах, в горах, на изолированных островах. Основной их задачей является наблюдение за глобальным фоновым уровнем загрязнения атмосферы, не испытывающим влияния никаких локальных источников.

Региональные станции должны находиться в сельской местности, не менее чем в 40 км от крупных источников загрязнения. Их цель - обнаружение в районе станции долгопериодных колебаний атмосферных составляющих, обусловленных изменениями в использовании земли и другими антропогенными воздействиями.

Континентальные станции охватывают более широкий спектр исследований по сравнению с региональными станциями. Они должны размешаться в отдаленных районах, чтобы в радиусе 100 км не было источников, которые могли бы повлиять на локальные уровни загрязнения.

Программы наблюдения на станциях

На станциях КФМ реализуется один из принципов фонового мониторинга - комплексное изучение содержания загрязняющих веществ в компонентах экосистем. В связи с этим программа наблюдений на СКФМ включает систематические измерения содержания загрязняющих веществ одновременно во всех средах (табл. 4.1), дополненные гидрометеорологическими данными.

Таблица 4.1. Список компонентов, подлежащих контролю на станциях КФМ

Компонент

Окружающая среда

атмосфера

атмосферные

выпадения

поверхностные и подземные воды

Диоксид серы

Оксид углерода

Диоксид углерода

Углеводороды

3,4-бенз(а)пирсн

Хлорорганические

соединения

Хлорфторуглеводороды

Анионы и катионы

Радионуклиды

Тяжелые металлы

Перечень включенных в программу веществ составлен с учетом таких их свойств, как распространенность и устойчивость в окружающей среде, способность к миграции на большие расстояния, степень негативного воздействия на биологические и геофизические системы различных уровней.

В атмосферном воздухе подлежат измерению среднесуточные концентрации: взвешенных веществ, озона, оксидов углерода и азота, диоксида серы, сульфатов, 3,4-бенз(а)пирена, ДЦТ и других хлорорга- нических соединений, свинца, кадмия, ртути, мышьяка, показателя аэрозольной мутности атмосферы.

В атмосферных осадках подлежат измерению в суммарных месячных пробах концентрации: свинца, ртути, кадмия, мышьяка, 3,4-бенз(а)пи- рена, ДЦТ и других хлорорганических соединений, pH, анионов и катионов.

Метеорологические наблюдения включают наблюдения за:

  • температурой и влажностью воздуха;
  • скоростью и направлением ветра;
  • атмосферным давлением, облачностью (количеством, формой, высотой);
  • солнечным сиянием;
  • атмосферными явлениями (туман, метели, грозы, пыльные бури и т. п.);
  • атмосферными осадками (количеством и интенсивностью);
  • снежным покровом (высотой, содержанием влаги);
  • температурой почвы (на поверхности и в глубине);
  • состоянием поверхности почвы;
  • радиацией (прямой, рассеянной, суммарной и отраженной) и радиационным балансом;
  • градиентами температуры, влажности и скорости ветра на высоте 0,5-10 м, градиентами температуры, влажности почвы на глубине 0-20 см;
  • тепловым балансом.

В обязательную программу наблюдений на базовых станциях ГСА включены наблюдения за содержанием диоксида серы, аэрозольной мутностью атмосферы, радиацией, взвешенными аэрозольными частицами, химическим составом осадков.

На региональных станциях программа наблюдений включает измерение атмосферной мутности, концентрации взвешенных аэрозольных частиц, определение химического состава атмосферных осадков.

Программа наблюдений на фоновых станциях разных категорий может быть расширена за счет увеличения числа определяемых в атмосфере газов, в частности, малых газовых компонентов, объемная концентрация которых менее 1 % и которые, преобразуясь в атмосфере, могут превратиться в аэрозольные частицы.

Любые наблюдения по программе фонового мониторинга должны сопровождаться комплексом обязательных метеорологических наблюдений - видимости, атмосферных явлений, температуры и влажности воздуха, направления и скорости ветра, атмосферного давления. Поэтому фоновые наблюдения желательно проводить на базе метеорологических станций.

По мнению экспертов ООН, первые пять загрязняющих атмосферу веществ, подлежащих контролю, располагаются в следующем по-

Таблица 4.2. Классификация загрязняющих веществ по их приоритетности

Класс приоритетности

Примесь

Среда

Тип программы мониторинга

S0 2 и взвешенные частицы

Воздух

Радионуклиды (Sr 90 , Cs 137)

Пища

Озон

Воздух

И (тропосфера)

Хлорорганические соединения и

Биота, человек

Ф (стратосфера)

диоксины

Биота, человек

Кадмий

Нитраты, нитриты

Вода, пища

Оксиды азота

Воздух

Ртуть

Пища, вода

Свинец

Воздух, пища

Диоксид углерода

Воздух

Оксид углерода

Воздух

Углеводороды нефти

Морская вода

Фториды

Пресная вода

Асбест

Воздух

Мышьяк

Питьевая вода

Микротоксины

Пища

Микробиологические загряз

Пища

нения

Воздух

Реакционноспособные загряз

нения

рядке: S0 2 , Оз, NO x , Pb, С0 2 (табл. 4.2). Необходимо отметить, что поступление этих веществ в приземный слой атмосферы в результате антропогенной деятельности сравнимо с естественным поступлением.

Введение

Сам термин «мониторинг» впервые появился в рекомендациях специальной комиссии СКОПЕ (научный комитет по проблемам окружающей среды) при ЮНЕСКО в 1971 году, а в 1972 году уже появились первые предложения по Глобальной системе мониторинга окружающей среды (Стокгольмская конференция ООН по окружающей среде).

Однако такая система не создана по сей день из-за разногласий в объемах, формах и объектах мониторинга, распределении обязанностей между уже существующими системами наблюдений. Такие же проблемы и у нас в стране, поэтому, когда возникает острая необходимость режимных наблюдений за окружающей средой, каждая отрасль должна создавать свою локальную систему мониторинга.

Мониторингом окружающей среды называют регулярные, выполняемые по заданной программе наблюдения природных сред, природных ресурсов, растительного и животного мира, позволяющие выделить их состояния и происходящие в них процессы под влиянием антропогенной деятельности. мониторинг атмосфера среда

Мониторинг атмосферного воздуха

Мониторинг атмосферного воздуха - это система наблюдений за состоянием атмосферного воздуха и источниками его загрязнения, а также оценка и прогноз основных тенденций изменения качества атмосферного воздуха в целях своевременного выявления негативных воздействий природных и антропогенных факторов.

В нашем государстве система наблюдений за атмосферным воздухом ведется на основании следующих принципов:

  • - согласованности нормативных правовых актов, устанавливающих порядок проведения видов мониторинга окружающей среды;
  • - совместимости технического и программного обеспечения;
  • - достоверности и сопоставимости данных мониторинга окружающей среды;
  • - согласованности размещения пунктов наблюдений за состоянием окружающей среды для получения комплексной экологической информации о состоянии экологических систем;

Проведение мониторинга атмосферного воздуха было начато в 1980 г. Именно в этот год на основании приказа Государственного комитета по гидрометеорологии от 20 октября 1980 г. № 181 было организован Центр по изучению и контролю загрязнения природной среды. В это время началось изучение атмосферного воздуха на государственном уровне.

С момента начала существования самостоятельной страны и до нынешнего времени было выделено 3 этапа развития мониторинга атмосферного воздуха:

  • 1. 1991-2001 гг - Период формирования национальной системы мониторинга окружающей среды и развития в ней непосредственного мониторинга атмосферного воздуха. С 1991 г. Центр по изучению и контролю загрязнения природной среды функционирует как Республиканский центр радиационного контроля и мониторинга природной среды. В 1992 году издаётся Закон об охране окружающей среду, на основании которого формируются механизмы национального мониторинга атмосферного воздуха.
  • 2. 2001 - 2008 гг. - указом Президента Республики Беларусь 24 сентября 2001 г. № 516 "О совершенствовании системы республиканских органов государственного управления и иных государственных организаций, подчинённых Правительству Республики Беларусь" государственное регулирование в области гидрометеорологии возложено на Министерство природных ресурсов и охраны окружающей среды. Приказом Минприроды 27 декабря 2001 г. № 347 переименован в Государственное учреждение "Республиканский центр радиационного контроля и мониторинга окружающей среды". В рамках Национальной системы мониторинга окружающей среды Республики Беларусь ГУ РЦРКМ осуществляет наблюдения за уровнем загрязнения атмосферного воздуха, поверхностных вод, почв, атмосферных осадков и снежного покрова в целях определения антропогенной нагрузки на указанные объекты окружающей среды за счет выбросов загрязняющих веществ и их трансграничного переноса.

В этот период выходит в свет один из основных документов, на котором базируется национальная система мониторинга Беларуси - постановление Совета Министров Республики Беларусь от 28 апреля 2004 г. № 482 «Об утверждении положений о порядке проведения в составе Национальной системы мониторинга окружающей среды в Республике Беларусь мониторинга поверхностных вод, подземных вод, атмосферного воздуха, локального мониторинга окружающей среды и использования данных этих мониторингов».

3. 2008 и по настоящие дни - закон Республики Беларусь от 16 декабря 2008 г. № 2-З «Об охране атмосферного воздуха». Данный правовой акт регулирует деятельность структур, изучающих атмосферный воздух и увеличивает контроль за данным природным объектом, что ставит работу, связанную с охраной атмосферного воздуха, в приоритетное направление развития государства.

Количество и местонахождение пунктов наблюдений мониторинга атмосферного воздуха, перечень параметров и периодичность наблюдений, а также перечень организаций, осуществляющих проведение мониторинга атмосферного воздуха, устанавливаются Минприроды по согласованию с Министерством здравоохранения, местными исполнительными и распорядительными органами и должны обеспечивать получение информации, достаточной для объективной оценки состояния атмосферного воздуха и его загрязнения. Пункты наблюдений мониторинга атмосферного воздуха включаются в государственный реестр пунктов наблюдений Национальной системы мониторинга окружающей среды в Республике Беларусь. Экологическая информация, полученная в результате проведения мониторинга атмосферного воздуха, должна включать сведения о состоянии атмосферного воздуха и его загрязнении, в том числе оценку и прогноз изменения состояния атмосферного воздуха и его загрязнения. Сбор, хранение, обработку, анализ данных мониторинга атмосферного воздуха, предоставление экологической информации, получаемой в результате проведения мониторинга атмосферного воздуха, обеспечивает Минприроды. В этих целях Министерство определяет информационно-аналитический центр мониторинга атмосферного воздуха.

Состав и содержание экологической информации, получаемой в результате проведения мониторинга атмосферного воздуха, сроки и порядок ее предоставления в главный информационно-аналитический центр Национальной системы мониторинга окружающей среды в Республике Беларусь определяются Минприроды. Данные мониторинга атмосферного воздуха, подлежащие длительному хранению, в установленном законодательством порядке включаются в государственный фонд данных о состоянии окружающей среды и воздействиях на нее.

Данные, полученные в результате проведения мониторинга атмосферного воздуха, должна учитываться при подготовке проектов государственных программ рационального использования природных ресурсов и охраны окружающей среды, прогнозов социально-экономического развития, территориальных комплексных схем рационального использования природных ресурсов и охраны окружающей среды, а также использоваться для информирования граждан о состоянии атмосферного воздуха и мерах по его охране, других целей.

В случае угрозы возникновения или возникновения чрезвычайных ситуаций, связанных с загрязнением атмосферного воздуха, экологическая информация, полученная в результате проведения мониторинга атмосферного воздуха, в порядке, установленном Советом Министров Республики Беларусь, передается в Министерство по чрезвычайным ситуациям, доводится до республиканских органов государственного управления, иных государственных организаций, подчиненных Правительству Республики Беларусь, местных исполнительных и распорядительных органов и населения для принятия экстренных мер по предупреждению чрезвычайных ситуаций, минимизации или ликвидации их последствий.

Наблюдения за состоянием атмосферного воздуха осуществляются на стационарных и передвижных пунктах наблюдений за состоянием атмосферного воздуха.

Стационарный пункт наблюдений представляет собой специально оборудованный павильон, в котором размещена аппаратура, необходимая для регистрации концентраций загрязняющих веществ и метеорологических параметров по установленной программе. Конкретные места установки стационарных пунктов наблюдений за состоянием атмосферного воздуха выбираются на основе предварительного исследования загрязнения атмосферного воздуха в данном районе выбросами стационарных и передвижных источников загрязнения атмосферного воздуха, а также с учетом потенциала загрязнения атмосферного воздуха.

Требования к стационарным пунктам наблюдения:

  • - стационарные пункты наблюдений за состоянием атмосферного воздуха размещаются на территориях с различными уровнями антропогенной нагрузки;
  • - стационарные пункты наблюдений за состоянием атмосферного воздуха на фоновых территориях располагают на расстоянии не менее 40 километров от крупных источников загрязнения;
  • - стационарные пункты наблюдений за трансграничным переносом загрязняющих воздух веществ располагают на расстоянии не менее 20 километров от крупных источников загрязнения;
  • - стационарные пункты наблюдений за состоянием атмосферного воздуха в населенных пунктах располагаются в жилых районах с различным типом застройки, местах сосредоточения промышленных предприятий, зонах отдыха, на территориях, примыкающих к дорогам.

Передвижной пост предназначен для отбора проб под дымовым факелом с целью выявления зоны влияния данного источника. Передвижные наблюдения осуществляются за специфическими загрязняющими веществами, характерными для выбросов данного предприятия, по специально разрабатываемым программам и маршрутам. Места отбора проб при передвижных наблюдениях выбирают на разных расстояниях от источника загрязнения с учетом закономерностей распространения загрязняющих веществ в атмосфере. Отбор проб воздуха производится по направлению ветра, последовательно, на расстояниях 0,2...0,5; 1; 2; 3; 4; 6; 8; 10; 15 и 20 км от стационарного источника выброса, а также с наветренной стороны источника. Под факелом проводятся наблюдения за типичными для данного предприятия ингредиентами с учетом объема выбросов и их токсичности. В зоне максимального загрязнения отбирается не менее 60 проб воздуха, а в других зонах - не менее 25. Отбор проб воздуха при проведении подфакельных наблюдений производится на высоте 1,5 м от поверхности земли в течение 20...30 мин, не менее чем в трех точках одновременно.

На каждый пункт наблюдений мониторинга атмосферного воздуха, за исключением передвижных пунктов, организации Минприроды составляют и ведут паспорт, наблюдения проводятся согласно годовым программам наблюдений мониторинга атмосферного воздуха.

Перечень пунктов наблюдений мониторинга атмосферного воздуха, параметры и периодичность наблюдений определяются Минприроды по согласованию с Министерством здравоохранения Республики Беларусь.

В г. Минске организована сеть наблюдений за атмосферным воздухом.

Мониторинг атмосферного воздуха на территории города проводится на 12 стационарных станциях. В трех районах (пр. Независимости, 110, ул. Тимирязева, 23 и ул. Радиальная, 50) работают в штатном режиме автоматические станции, на которых концентрации приоритетных загрязняющих веществ измеряют круглосуточно в непрерывном режиме.

Выполнение испытаний отобранных проб атмосферного воздуха, атмосферных осадков и снежного покрова осуществляется аналитическими лабораториями организаций Минприроды, аккредитованными органами Госстандарта и поставленными на учет Минприроды в соответствии с постановлением Министерства природных ресурсов и охраны окружающей среды Республики Беларусь от 23 января 2008 г. № 7 «О некоторых вопросах учета аналитических лабораторий, осуществляющих измерения в области охраны окружающей среды».

Программа наблюдений разрабатывается РЦРКМ и утверждается директором Департамента по гидрометеорологии. Утвержденная программа наблюдений не позднее 15 декабря года, предшествующего году, на который разрабатывается программа наблюдений, направляется Департаментом по гидрометеорологии в организации Минприроды для исполнения.

Предложение об изменении местонахождения пункта наблюдений мониторинга атмосферного воздуха, а также предложение об изменении и (или) дополнении программы наблюдений, проводимой в этом пункте, вносится организацией Минприроды на рассмотрение в РЦРКМ, который в месячный срок рассматривает и анализирует предложение об изменении местонахождения пункта наблюдений мониторинга атмосферного воздуха и представляет свои предложения в Департамент по гидрометеорологии.

Места отбора проб должны обеспечивать репрезентативность проб по качеству атмосферного воздуха на участках с площадью не менее 200 квадратных метров вблизи дорожного движения и с площадью в несколько квадратных километров на остальных территориях. Отбор проб атмосферного воздуха для определения содержания твердых частиц суммарно проводится на высоте 1,5 м от поверхности земли, других загрязняющих веществ - на высоте 3,5 м от поверхности земли.

Пункты отбора проб атмосферного воздуха на территориях, примыкающих к дорогам, должны находиться на расстоянии не менее 25 м от пересечения основных дорог и не ближе 4 м от центральной части ближайшей полосы движения транспортных средств.

Количество стационарных пунктов наблюдений за состоянием атмосферного воздуха определяют с учетом численности жителей населенного пункта: до 50 тыс. жителей - 1 пункт, 50-100 тыс. жителей - 2 пункта, 100-200 тыс. жителей - 2-3 пункта, 200-500 тыс. жителей - 3-5 пунктов, 0,5-1 млн. жителей - 5-10 пунктов, более 1 млн. жителей - 10-20 пунктов. При определении оптимального количества стационарных пунктов наблюдений за состоянием атмосферного воздуха следует также учитывать площадь и конфигурацию населенного пункта, многообразие функциональных зон, вид источников загрязнения атмосферного воздуха, сложность рельефа. Пункты наблюдений за состоянием атмосферного воздуха размещаются на открытой, проветриваемой со всех сторон площадке с не пылящим покрытием (асфальте, твердом грунте, газоне).

Программа наблюдений подразделяется на непрерывную программу наблюдений и дискретную программу наблюдений. Дискретная программа наблюдений подразделяется на полную дискретную программу наблюдений и сокращенную дискретную программу наблюдений. Непрерывная программа наблюдений и полная дискретная программа наблюдений направлены на получение первичных данных наблюдений о разовых и среднесуточных концентрациях загрязняющих веществ в атмосферном воздухе, сокращенная дискретная программа наблюдений - о разовых концентрациях.

Стационарная автоматическая станция контроля атмосферы воздуха СКАТ-2011

Автоматическая станция контроля атмосферного воздуха «СКАТ-2011» (далее: «станция») предназначена для обеспечения процесса мониторинга (непрерывного автоматического измерения) концентрации загрязняющих веществ в атмосферном воздухе, контроля метеопараметров и отбора газовых проб. Станция включает в себя систему жизнеобеспечения, измерительный комплекс «СКАТ» и дополнительное аналитическое оборудование.

Прибор контроля и мониторинга воздуха рабочей зоны «Метеометр МЭС-200»

Прибор контроля и мониторинга воздуха рабочей зоны «Метеометр МЭС-200»предназначен для измерения атмосферного давления, относительной влажности и температуры воздуха, скорости воздушных потоков в атмосфере и внутри помещений, интегрального показателя тепловой нагрузки среды (ТНС-индекса), температуры влажного термометра, энергетической освещенности, яркости и коэффициента пульсации оптического излучения в видимой, ультрафиолетовой и инфракрасной областях спектра в атмосфере и внутри помещений, концентрации токсичных газов CO;H2S;SO2

Организация наблюдений за уровнем загрязнения атмосферы в городах и населенных пунктах осуществляется в соответствии с ГОСТ 17.2.3.01 - 86 «Охрана природы. Атмосфера. Правила конт­роля качества воздуха населенных пунктов». Наблюдения за уров­нем загрязнения атмосферы производятся на посту , представляю­щем собой заранее выбранное для этой цели место (точку местно­сти), на котором размещается павильон или автомобиль, обору­дованный соответствующими приборами.

Посты наблюдений устанавливаются трех категорий: стационар­ные, маршрутные и передвижные (подфакельные).

Стационарный пост предназначен для обеспечения не­прерывной регистрации содержания загрязняющих веществ или регулярного отбора проб воздуха для последующего анализа. Из числа стационарных постов выделяются опорные стационарные посты, которые предназначены для выявления долговременных измерений содержания основных и наиболее распространенных специфических загрязняющих веществ.

Маршрутный пост предназначен для регулярного отбора проб воздуха в том случае, когда невозможно (нецелесообразно) установить пост или необходимо более детально изучить состоя­ние загрязнения воздуха в отдельных районах, например в новых жилых районах.

Передвижной (подфакельный) пост служит для отбора проб под дымовым (газовым) факелом с целью выявле­ния зоны влияния данного источника промышленных выбросов.

Стационарные посты оборудованы специальными павильона­ми, которые устанавливают в заранее выбранных местах. Наблюде­ния на маршрутных постах проводятся с помощью передвижной лаборатории, оснащенной необходимым оборудованием и прибо­рами. Маршрутные посты также устанавливают в заранее выбран­ных точках. Одна машина за рабочий день объезжает 4...5 точек. Порядок объезда автомашиной выбранных маршрутных пестов дол­жен быть одним и тем же, чтобы определение концентраций при­месей проводилось в постоянные сроки. Наблюдения под факелом предприятия также ведутся с помощью специально оборудован­ной автомашины. Подфакельные посты представляют собой точ­ки, расположенные на фиксированных расстояниях от источника. Они перемещаются в соответствии с направлением факела обсле­дуемого источника выбросов.

Каждый пост независимо от категории размещается на откры­той, проветриваемой со всех сторон площадке (на асфальте, твер­дом грунте, газоне).

Стационарный и маршрутный посты организуются в местах, выбранных с учетом обязательного предварительного исследова­ния загрязнения воздушной среды города промышленными выбро­сами, выбросами автотранспорта, бытовыми и другими источ­никами, а также с учетом изучения метеорологических условий рассеивания примесей путем эпизодических наблюдений и расче­тов полей максимальных концентраций примесей. При этом сле­дует учитывать повторяемость направления ветра над территорией города. В определенных направлениях выбросы от многочисленных предприятий могут создавать общий факел, соизмеримый с факе­лом крупного источника. Если повторяемость таких направлений ветра велика, то зона наибольшего среднего уровня загрязнения будет формироваться на расстоянии 2...4 км от основной группы предприятий, причем иногда она может располагаться и на окра­ине города. Для характеристики распреде­ления концентрации примеси по городу посты необходимо уста­навливать в первую очередь в тех жилых районах, где возможны наибольшие средние уровни загрязнения, затем в административ­ном центре населенного пункта и в жилых районах с различными типами застройки, а также в парках и зонах отдыха. К числу наи­более загрязненных районов относятся зоны наибольших максимальных разовых и среднесуточных концентраций. Эти концентрации создаются выбросами промышленных предприятий. Такие зоны находятся на расстоянии 0,5... 2 км от низких источников выбросов и 2... 3 км от высоких. Такие концентрации могут создавать также магистрали интенсивного движения транспор­та, поскольку влияние автомагистрали обнаруживается лишь в непосредственной близости от нее (на расстоянии 50... 100 м).

Регулярные наблюдения на стационарных постах проводятся по одной из четырех программ наблюдений: полной (П), неполной (НП), сокращенной (СС), суточной (С).

1.Полная программа наблюдений предназначена для по­лучения информации о разовых и среднесуточных концентрациях. Наблюдения в этом случае выполняются ежедневно путем непре­рывной регистрации с помощью автоматических устройств или дискретно, через равные промежутки времени, не менее четырех раз при обязательном отборе проб в 1, 7, 13и19ч по местному декретному времени.

2.По неполной программе наблюдения проводятся с це­лью получения информации о разовых концентрациях ежедневно в 7, 13 и 19 ч местного декретного времени.

3.По сокращенной программе наблюдения проводятся с целью получения информации только о разовых концентрациях ежедневно в 7 и 13 ч местного декретного времени. Наблюдения по сокращенной программе допускается проводить при температуре воздуха ниже 45 °С и в местах, где среднемесячные концентрации ниже 1/20 максимальной разовой ПДК или меньше нижнего пре­дела диапазона измерений концентрации примеси используемым методом.

Допускается проводить наблюдения по скользящему графику: в 7, 10 и 13 ч - во вторник, четверг и субботу, в 16, 19 и 22 ч - в понедельник, среду и пятницу. Наблюдения по скользящему гра­фику предназначены для получения информации о разовых кон­центрациях.

4.Суточная программа отбора проб предназначена для по­лучения информации о среднесуточной концентрации. В отличие от полной программы наблюдения в этом случае проводятся пу­тем непрерывного суточного отбора проб, при этом исключается получение разовых значений концентрации. Все программы на­блюдений позволяют получать информацию о среднемесячных, среднегодовых и средних концентрациях за более длительный период.

Слово мониторинг происходит от лат. monitor – наблюдающий, предостерегающий. В Федеральном законе "Об охране атмосферного воздуха" приведены общие цели мониторинга атмосферного воздуха и определение мониторинга атмосферного воздуха как системы наблюдений за состоянием атмосферного воздуха, его загрязнением и за происходящими в нем природными явлениями, а также оценки и прогноза состояния атмосферного воздуха, его загрязнения. Мониторинг воздуха является частью экологического мониторинга, но по сравнению с экологическим мониторингом наблюдение за атмосферным воздухом имеет свои особенности.

Направления мониторинга атмосферного воздуха

Мониторинг атмосферного воздуха является составной частью мониторинга за состоянием окружающей среды. Направления наблюдений за атмосферным воздухом корреспондируют ряду федеральных законов и функциям предусмотренных в них государственных органов исполнительной власти. Так, функции осуществления государственного мониторинга атмосферного воздуха возлагаются на специально уполномоченные федеральные органы исполнительной власти (Минсельхоз, Росгидромет, Росреестр) и другие органы исполнительной власти:

  • – в области гидрометеорологии и смежных с ней областях – согласно Федеральному закону от 19.07.1998 № 113-Φ3 "О гидрометеорологической службе";
  • – в области охраны окружающей среды – согласно Закону об охране окружающей среды;
  • – в области санитарно-эпидемиологического надзора – согласно Федеральному закону "О санитарно-эпидемиологическом благополучии населения".

В соответствии с Положением о государственной службе наблюдения за состоянием окружающей природной среды, утвержденным постановлением Правительства РФ от 23.08.2000 № 622, перечень объектов, владельцы которых должны осуществлять мониторинг атмосферного воздуха, устанавливают и пересматривают органы Минприроды России совместно с территориальными органами Росгидромета.

Владельцы объектов (источников вредных химических, биологических и физических воздействий) – юридические лица должны осуществлять мониторинг и охрану атмосферного воздуха посредством производственного контроля в соответствии с законодательством РФ об охране атмосферного воздуха.

Общегосударственный характер мониторинга атмосферного воздуха

Единство системы и государственный характер наблюдений за атмосферным воздухом предполагают приведение в соответствие с федеральным законодательством актов субъектов РФ но вопросам охраны, использования и мониторинга атмосферного воздуха, иным аспектам совместного ведения в области охраны окружающей среды. Большую роль в применении и разграничении природоохранных и природоресурсных полномочий между органами государственной власти РФ и органами государственной власти ее субъектов играют правовые акты Конституционного Суда РФ.

В Республиках Адыгея и Башкортостан владение, пользование и распоряжение природными ресурсами передавалось их народам. По конституциям Республик Коми и Северная Осетия – Алания природные ресурсы находились в различных формах собственности в порядке и на условиях, установленных их республиканским законодательством. Конституционный Суд РФ Определением от 27.06.2000 № 92-0 признал эти положения не соответствующими Конституции, поскольку они ограничивают суверенитет Российской Федерации и нарушают установленное разграничение предметов ведения и полномочий между органами государственной власти РФ и органами государственной власти субъектов РФ. Эти положения, как не относящиеся только к ведению республик, а относящиеся к совместному ведению РФ и ее субъектов, утрачивают силу и не подлежат применению судами и другими органами.

В конституции Республики Алтай природные ресурсы были объявлены достоянием (собственностью) Республики Алтай на подведомственной территории. Эти положения по аналогичным основаниям Постановлением Конституционного Суда РФ от 07.06.2000 № 10-П также признаны неконституционными.

Приводя свои нормативные правовые акты по предметам совместного ведения в соответствие с федеральным законодательством, субъекты РФ нс должны выходить за пределы своих полномочий, установленные Конституцией. Конституционный Суд РФ своим Определением от 19.04.2001 № 65-0 по Республике Башкортостан вновь подтвердил, что субъекты РФ не должны повторять идентичные положения, признанные не соответствующими Конституции и потому утратившие силу.

Правовой характер основных мер по защите атмосферного воздуха от загрязнения, разграничение полномочий по осуществлению мониторинга атмосферного воздуха, неотъемлемая связь атмосферного воздуха с другими компонентами природной среды предполагают не только разграничение, но и объединение, разнообразие усилий сообщества по совершенствованию правового, организационного, экономического механизмов охраны атмосферного воздуха.

Нередко в целях уменьшения выбросов вредных загрязняющих веществ в атмосферный воздух принимаются акты об упорядочении транспортного движения в крупных городах разрабатываются и осуществляются планы приостановления деятельности предприятий, наиболее загрязняющих атмосферу, на случай повышения температуры в целях предупреждения угрозы для жизни и здоровья людей в результате загрязнения атмосферного воздуха.

Договорные формы охраны атмосферного воздуха приобретают все большее значение: договоры заключаются между различными государствами, между органами исполнительной власти РФ, субъектов РФ.

Подписан договор между Республикой Башкортостан и Республикой Татарстан о сотрудничестве в области охраны окружающей среды, использования природных ресурсов и обеспечения экологической безопасности на сопредельных территориях, которым ставились и частично решались задачи охраны атмосферного воздуха.

Случайные статьи

Вверх