Презентация на тему "современное представление о механизмах и закономерностях эволюции". Современное представление о механизмах и закономерностях эволюции Возникновение и развитие СТЭ

Современная теория эволюции построена по теории Дарвина, поэтому ее называют неодарвинизмом . Главной заслугой Дарвина было установление механизма эволюции, состоящего в естественном отборе организмов, наиболее приспособленных к внешним условиям, и постепенном накоплении приобретенных признаков. То, что эти признаки не рассеиваются в последующих поколениях, было объяснено дискретным наследованием генов по законам Менделя - австрийского естествоиспытателя, основоположника учения о наследственности

Кроме естественного отбора, безусловно, одного из важнейших факторов эволюции, ученые называли и другие. В качестве одного из них выступает случайность . Источниками изменчивости служат случайные генные или хромосомные мутации. Особенно важную роль играют случайные процессы в маленьких популяциях. Фактически каждое поколение потомков содержит выборку из генов, имевшихся в предыдущем поколении. Если скрещивающаяся популяция невелика, то частоты некоторых генов могут внезапно изменится за одно или несколько поколений. Такое изменение частоты генов называют генетическим дрейфом.

К факторам эволюции можно отнести и взаимопомощь, и кооперацию , которую выделил русский князь, геолог П.А. Кропоткин, наблюдая перемещения больших масс животных в Восточной Сибири.

Идеи Дарвина широко обсуждались - частично из-за неточностей в определении и понимании терминов (наследственность и приспособляемость), частично из-за неправильного истолкования этих слов последователями учения. Кроме того, естественный отбор должен был занимать достаточно большие промежутки времени.

Итак, самым слабым местом в учении Дарвина были представления о наследственности, которые подвергались серьезной критике. В то время ученые, в том числе и Дарвин еще не знали законов наследования признаков. Правда, известно было, что иногда признаки могут проявляться не во всех поколениях подряд. Полагали, однако, что наследственность в целом основана на принципе смешивания, за исключением отдельных случаев. Например, у какого то растения могут быть либо белые, либо красные цветки. При механизме смешивания у гибрида цветки должны быть розовыми. Во многих случаях так и бывает.

Анализируя механизм усреднения признаков, британский инженер и физик Ф. Дженкин, в 1867 на основании строгих математических выкладок доказал, что в случае усреднения признаков при скрещивании естественный отбор не работает, а появившиеся новые признаки со временем исчезнут. Дарвин так и не нашел убедительного опровержения его доказательства и всю жизнь его преследовал этот "кошмар Дженкинса".

И лишь возникновение генетики дало возможность опровергнуть возражение Дженкинса. Генетика помогла дарвинизму, объяснив, что появившийся признак не может исчезнуть, т.к наследственный аппарат сохраняет случайно возникшее в нем, подобно тому, как сохраняются опечатки в книгах при их воспроизводстве.

В 30-е годы XX века американский генетик Сьюалл Райт и английский биолог Берден Холдейн, исследовав генетические процессы, происходящие внутри вида и завершающиеся образованием разновидностей, приводящих потом к появлению нового вида, сформировали учение о микро эволюции и пришли к выводу, что генетика может служить фундаментом дарвиновской идее.

Свой вклад в исследование генотипической изменчивости в конце 60-х годов ХХ века внесли русские ученые Н.В. Тимофеев-Ресовский, Н.Н. Воронцов, А.В. Яблоков. В их теории эволюции элементарной единицей является популяция, а для возникновения стойких эволюционных сдвигов требуется действие не менее четырех эволюционных факторов: мутаций, флуктуаций численности особей ("волны жизни"), изоляции и естественного отбора.

Мутации - поставляют элементарный эволюционный материал, но сами мутации еще не обеспечивают эволюцию, поскольку происходят в разных направлениях и могут привести к разрушению приобретенного. Новый вид может начаться в случае мутации, давшей репродукционную изоляцию за один скачок. Возникшие особи называют полиплоидными , они могут размножаться сами по себе, но не могут скрещиваться со своими нормальными родичами и потому оказываются репродуктивно изолированными от них.

Изоляция - тоже важный фактор эволюции, она может быть пространственной, сезонной и пр.

Флуктуации численности - также происходят в разных направлениях и не придают определенного направления наследственным преобразованиям.

Естественный отбор - выступает в двух формах: движущей и стабилизирующей. Движущий отбор производит закономерное изменение популяций в определенном направлении, а стабилизирующий - совершенствует процессы индивидуального развития особей, не меняя признаков организмов.

По общему мнению ученых эволюция - это медленный процесс, мутантные гены возникают редко и еще реже оказываются благоприятней уже существующих. Сейчас многие эволюционисты считают, что у некоторых видов эволюция происходит по типу "прерывистого равновесия", т.е. долгое время виды практически не изменяются или частоты разных генов остаются вблизи некоторого положения равновесия, определяемого общими селективными факторами. Затем происходит какое-то резкое изменение окружающей среды или крупная генетическая мутация, изменяющая генофонд, и за несколько тысяч лет (это быстро в эволюционных масштабах времени) появляется новый вид со своим генетическим равновесием.

Материал для эволюции стохастичен (случаен), но сама она является направленной. Естественный отбор, являясь направляющим фактором, определяет направленное движение биосферы, создание порядка из хаоса.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Государственное бюджетное образовательное учреждение

среднего профессионального образования

Междуреченский горностроительный техникум

РЕФЕРАТ НА ТЕМУ:

Современное представление о механизмах и закономерностях эволюции

По дисциплине: Биология

Введение

Заключение

Введение

Современной теорией эволюции, является СТЭ - Синтетическая теория эволюции.

Что же это? Это теория искусственно созданная учёными, которая объединила множество верных положений. Другими словами, это - современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Р. Фишера (1918--1930), Дж.Б.С. Холдейна-младшего (1924), С. Райта (1931; 1932), учение Дарвина приобрело прочный генетический фундамент.

эволюция генетика дарвинизм

1. Предпосылки к возникновению теории

1.1 Проблемы в оригинальной дарвиновской теории, приведшие к утере её популярности

Вскоре после возникновения теория естественного отбора подвергалась конструктивной критике со стороны её принципиальных противников, а некоторые её элементы -- и со стороны её сторонников. Большинство контраргументов против дарвинизма за первую четверть века её существования было собрано в двухтомной монографии «Дарвинизм: Критическое исследование» русским философом и публицистом Н.Я. Данилевским. Нобелевский лауреат 1908 г. И.И. Мечников, соглашаясь с Дарвином по вопросу ведущей роли естественного отбора, не разделял дарвиновскую оценку важности перенаселения для эволюции. Сам основатель теории наибольшее значение придавал контраргументу английского инженера Ф. Дженкина, который с лёгкой руки Дарвина получил название «кошмар Дженкина».

В итоге в конце XIX -- начале XX веков большинство биологов принимало концепцию эволюции, но мало кто считал, что естественный отбор является главной её движущей силой. Господствовать сталинеоламаркизм, теория ортогенеза и комбинация менделеевской генетики с мутационной теорией Коржинского -- Де Фриза. Эту ситуацию английский биолог Джулиан Хаксли окрестил «затмением дарвинизма»

1.2 Противоречия между генетикой и дарвинизмом

Несмотря на то, что открытая Менделем дискретность наследственности устранила существенные затруднения, связанные с «кошмаром Дженкина», многие генетики отвергали дарвиновскую теорию эволюции

2. Возникновение и развитие СТЭ

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Рональда Фишера, Джона Б.С. Холдейна-младшего и Сьюэла Райта, учение Дарвина приобрело прочный генетический фундамент.

Статья С.С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С.С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н.В. Тимофеева-Ресовского и Ф.Г. Добржанского идеи, выраженные С.С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации -- новые варианты генов.

Влияние генов на строение и функции организма плейотропно: каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения. Поэтому рекомбинация, порождая всё новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются прежде всего такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Эта идея нашла выражение в труде 4

Р. Фишера «The genetical theory of natural selection» (1930). Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов.

Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов:

1. мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;

2. рекомбинационного, создающего новые фенотипы особей;

3. селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.

Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-младшего, издавшего её в 1932 году под названием «The causes of evolution». Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции.

Крупные эволюционные новшества очень часто возникают на основе неотении (сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека («голая обезьяна»), эволюцию таких крупных таксонов, как граптолиты и фораминиферы. В 1933 году учитель Четверикова Н. К. Кольцов показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Она ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа.

Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ -- в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского «Genetics and the Origin of Species». Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная специализация Добржанского позволила ему первому перебросить твёрдый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр). Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» -- тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввёл в широкий научный оборот полузабытоеуравнение Харди-Вайнберга. Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, то есть адаптивно-нейтральным путем.

В англоязычной литературе среди создателей СТЭ чаще всего называют имена Ф. Добржанского, Дж. Хаксли, Э. Майра, Б. Ренша, Дж. Стеббинса. Это, конечно, далеко не полный список. Только из русских учёных, по меньшей мере, следовало бы назвать И. И. Шмальгаузена, Н. В. Тимофеева-Ресовского, Г. Ф. Гаузе, Н. П. Дубинина, А. Л. Тахтаджяна. Из британских ученых велика роль Дж. Б. С. Холдейна-младшего, Д. Лэка, К. Уоддингтона, Г. де-Бира. Немецкие историки среди активных создателей СТЭ называют имена Э. Баура, В. Циммермана, В. Людвига, Г. Хеберера и других.

3. Основные положения СТЭ, их историческое формирование и развитие

В 1930--1940-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Термин «современный» или «эволюционный синтез» происходит из названия книги Дж. Хаксли «Evolution: The Modern synthesis» (1942). Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Дж. Симпсоном в 1949 году.

элементарной единицей эволюции считается локальная популяция;

материалом для эволюции являются мутационная и рекомбинационная изменчивость;

естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов;

дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;

вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;

видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Активность американских создателей СТЭ была столь высока, что они быстро создали международное общество по изучению эволюции, которое в 1946 стало учредителем журнала «Evolution». Журнал «American Naturalist» вновь вернулся к публикации работ по эволюционной тематике, делая акцент на синтезе генетики, экспериментальной и полевой биологии. В результате многочисленных и самых разнообразных исследований основные положения СТЭ прошли не только успешную проверку, но и видоизменялись, дополнялись новыми идеями.

В 1942 немецко-американский орнитолог и зоогеограф Э. Майр издал книгу «Систематика и происхождение видов», в которой была последовательно развита концепция политипического вида и генетико-географическая модель видообразования. Майр предложил принцип основателя, который в окончательной форме был им сформулирован в 1954. Если дрейф генов, как правило, дает причинное объяснение формированию нейтральных признаков во временном измерении, то принцип основателя в пространственном.

После публикации трудов Добржанского и Майра систематики получили генетическое объяснение тому, в чём они давно уже были 7

уверены: подвиды и близкородственные виды различаются в значительной степени по адаптивно-нейтральным признакам.

Ни один из трудов по СТЭ не может сравниться с упомянутой книгой английского экспериментального биолога и натуралиста Дж. Хаксли «Evolution: The Modern synthesis» (1942 год). Труд Хаксли по объему анализируемого материала и широте проблематики превосходит даже книгу самого Дарвина. Хаксли на протяжении многих лет держал в уме все направления в развитии эволюционной мысли, внимательно следил за развитием родственных наук и имел личный опыт генетика-экспериментатора. Видный историк биологии Провин так оценил труд Хаксли: «„Эволюция. Современный синтез“ была наиболее всесторонней по теме и документам, чем другие работы на эту тему. Книги Холдейна и Добржанского были написаны главным образом для генетиков, Майра для систематиков и Симпсона для палеонтологов. Книга Хаксли стала доминантной силой в эволюционном синтезе».

По объёму книга Хаксли не имела себе равных (645 страниц). Но самое интересное состоит в том, что все основные идеи, изложенные в книге, были очень ясно выписаны Хаксли на 20 страницах ещё в 1936, когда он послал в адрес Британской ассоциации содействия науки статью под названием «Natural selection and evolutionary progress». В этом аспекте ни одна из публикаций по эволюционной теории, вышедшая в 1930-40-х годах, не может сравниться со статьей Хаксли. Хорошо чувствуя дух времени, Хаксли писал: «В настоящее время биология находится в фазе синтеза. До этого времени новые дисциплины работали в изоляции. Сейчас проявилась тенденция к унификации, которая является более плодотворной, чем старые односторонние взгляды на эволюцию» (1936). Ещё в трудах 1920-х годов Хаксли показал, что наследование приобретенных признаков невозможно; естественный отбор действует как фактор эволюции и как фактор стабилизации популяций и видов (эволюционный стазис); естественный отбор действует на малые и крупные мутации; географическая изоляция -- важнейшее условие видообразования. Кажущаяся цель в эволюции объясняется мутациями и естественным отбором.

Основные положения статьи Хаксли 1936 года можно очень кратко изложить в такой форме:

Мутации и естественный отбор -- комплементарные процессы, которые по отдельности не способны создать направленные эволюционные изменения.

Отбор в природных популяциях чаще всего действует не на отдельные гены, а на комплексы генов. Мутации не могут быть полезными или вредными, но их селективная ценность варьирует в разных средах. Механизм действия отбора зависит от внешней и генотипической среды, а вектор его действия от фенотипического проявления мутаций.

Репродуктивная изоляция -- главный критерий, свидетельствующий о завершении видообразования. Видообразование может быть непрерывным и линейным, непрерывным и дивергентным, резким и конвергентным.

Градуализм и панадаптационизм не являются универсальными характеристиками эволюционного процесса. Большинству наземных растений 8

свойственна именно прерывистость и резкое образование новых видов. Широко распространённые виды эволюционируют градуально, а малые изоляты -- прерывисто и не всегда адаптивно. В основе прерывистого видообразования лежат специфические генетические механизмы (гибридизация, полиплоидия, хромосомные аберрации). Виды и надвидовые таксоны, как правило, различаются по адаптивно-нейтральным признакам. Главные направления эволюционного процесса (прогресс, специализация) -- компромисс между адаптивностью и нейтральностью.

В природных популяциях широко распространены потенциально преадаптивные мутации. Этот тип мутаций играет важнейшую роль в макроэволюции, особенно в периоды резких средовых перемен.

Концепция скоростей действия генов объясняет эволюционную роль гетерохроний и аллометрии. Синтез проблем генетики с концепцией рекапитуляции ведет к объяснению быстрой эволюции видов, находящихся в тупиках специализации. Через неотению происходит «омоложение» таксона, и он приобретает новые темпы эволюции. Анализ соотношения онто- и филогенеза дает возможность обнаружить эпигенетические механизмы направленности эволюции.

В процессе прогрессивной эволюции отбор действует в сторону улучшения организации. Главным результатом эволюции было появление человека. С возникновением человека большая биологическая эволюция перерастает в психосоциальную. Эволюционная теория входит в число наук, изучающих становление и развитие человеческого общества. Она создает фундамент для понимания природы человека и его будущего.

Широкий синтез данных сравнительной анатомии, эмбриологии, биогеографии, палеонтологии с принципами генетики был осуществлен в трудах И.И. Шмальгаузена (1939), А.Л. Тахтаджяна (1943), Дж. Симпсона (1944), Б. Ренша (1947). Из этих исследований выросла теория макроэволюции. Только книга Симпсона была опубликована на английском языке и в период широкой экспансии американской биологии, чаще всего она одна упоминается среди основополагающих трудов.

И.И. Шмальгаузен был учеником А.Н. Северцова, однако уже в 20-е годы определился его самостоятельный путь. Он изучал количественные закономерности роста, генетику проявления признаков, саму генетику. Одним из первых Шмальгаузен осуществил синтез генетики и дарвинизма. Из огромного наследия И.И. Шмальгаузена особо выделяется его монография «Пути и закономерности эволюционного процесса» (1939). Впервые в истории науки он сформулировал принцип единства механизмов микро- и макроэволюции. Этот тезис не просто постулировался, а прямо следовал из его теории стабилизирующего отбора, который включает популяционно-генетические и макроэволюционные компоненты (автономизация онтогенеза) в ходе прогрессивной эволюции.

А.Л. Тахтаджян в монографической статье: «Соотношения онтогенеза и филогенеза у высших растений» (1943) не только активно включил ботанику в орбиту эволюционного синтеза, но фактически построил оригинальную 9

онтогенетическую модель макроэволюции («мягкий сальтационизм»). Модель Тахтаджяна на ботаническом материале развивала многие замечательные идеи А.Н. Северцова, особенно теорию архаллаксисов (резкое, внезапное изменение органа на самых ранних стадиях его морфогенеза, приводящее к изменениям всего хода онтогенеза). Труднейшая проблема макроэволюции -- разрывы между крупными таксонами, объяснялась Тахтаджяном ролью неотении в их происхождении. Неотения играла важную роль в происхождении многих высших таксономических групп, в том числе и цветковых. Травянистые растения произошли от древесных путем ярусной неотении.

Ещё в 1931 году С. Райтом была предложена концепция случайного дрейфа генов, которая говорит об абсолютно случайном формировании генофонда дема как малой выборки из генофонда всей популяции. Изначально дрейф генов оказался тем самым аргументом, которого очень долго не хватало для того, чтобы объяснить происхождение неадаптивных различий между таксонами. Поэтому идея дрейфа сразу стала близка широкому кругу биологов. Дж. Хаксли назвал дрейф «эффектом Райта» и считал его «наиболее важным из недавних таксономических открытий». Джордж Симпсон (1948) основал на дрейфе свою гипотезу квантовой эволюции, согласно которой популяция не может самостоятельно выйти из зоны притяжения адаптивного пика. Поэтому, чтобы попасть в неустойчивое промежуточное состояние, необходимо случайное, независящее от отбора генетическое событие -- дрейф генов.

Однако вскоре энтузиазм по отношению к дрейфу генов ослаб. Причина интуитивно ясна: любое полностью случайное событие неповторимо и непроверяемо. Широкое цитирование работ С. Райта в современных эволюционных учебниках, излагающих исключительно синтетическую концепцию, нельзя объяснить иначе как стремлением осветить все разнообразие взглядов на эволюцию, игнорируя родство и различие между этими взглядами.

Экология популяций и сообществ вошла в эволюционную теорию благодаря синтезу закона Гаузе и генетико-географической модели видообразования. Репродуктивная изоляция была дополнена экологической нишей в качестве важнейшего критерия вида. При этом нишевый подход к виду и видообразованию оказался более общим, чем чисто генетический, так как он применим и к видам, не имеющим полового процесса.

Вхождение экологии в эволюционный синтез представляло собой заключительный этап формирования теории. С этого момента начался период использования СТЭ в практике систематики, генетики, селекции, продолжавшийся до развития молекулярной биологии и биохимической генетики.

С развитием новейших наук СТЭ начала вновь расширяться и модифицироваться. Быть может, важнейшим вкладом молекулярной генетики в теорию эволюции было разделение генов на регуляторные и структурные (модель Р. Бриттена и Э. Дэвидсона, 1971). Именно регуляторные гены контролируют возникновение репродуктивных изолирующих механизмов, которые изменяются независимо от энзимных генов и вызывают быстрые изменения (в масштабах геологического времени) на морфологическом и физиологическом уровнях.

Идея случайного изменения генных частот нашла применение в теории нейтральности (Мотоо Кимура, 1985), которая выходит далеко за рамки традиционной синтетической теории, будучи созданной на фундаменте не классической, а молекулярной генетики. Нейтрализм основан на совершенно естественном положении: далеко не все мутации (изменения нуклеотидного ряда ДНК) приводят к изменению последовательности аминокислот в соответствующей молекуле белка. Те замены аминокислот, которые состоялись, не обязательно вызывают изменение формы белковой молекулы, а когда такое изменение все же происходит, оно не обязательно изменяет характер активности белка. Следовательно, многие мутантные гены выполняют те же функции, что и нормальные гены, отчего отбор по отношению к ним ведет себя полностью нейтрально. По этой причине исчезновение и закрепление мутаций в генофонде зависят чисто от случая: большинство их пропадает вскоре после появления, меньшинство остается и может существовать довольно долго. В результате отбору, оценивающему фенотипы, «по существу безразлично, какие генетические механизмы определяют развитие данной формы и соответствующей функции, характер молекулярной эволюции совершенно отличен от характера фенотипической эволюции» (Кимура, 1985).

Последнее высказывание, отражающее суть нейтрализма, никак не согласуется с идеологией синтетической теории эволюции, восходящей к концепции зародышевой плазмы А. Вейсмана, с которой началось развитие корпускулярной теории наследственности. Согласно взглядам Вейсмана, все факторы развития и роста находятся в половых клетках; соответственно, чтобы изменить организм, необходимо и достаточно изменить зародышевую плазму, то есть гены. В итоге теория нейтральности наследует концепцию генетического дрейфа, порожденную неодарвинизмом, но впоследствии им оставленную.

Появились новейшие теоретические разработки, позволившие еще больше приблизить СТЭ к реально существующим фактам и явлениям, которые ее первоначальная версия не могла объяснить. Достигнутые эволюционной биологией на настоящий момент рубежи отличаются от представленных ранее постулатов СТЭ:

Постулат о популяции как наименьшей эволюирующей единице остается в силе. Однако огромное количество организмов без полового процесса остается за рамками этого определения популяции, и в этом видится значительная неполнота синтетической теории эволюции.

Естественный отбор не является единственным движителем эволюции.

Эволюция далеко не всегда носит дивергентный характер.

Эволюция не обязательно идет постепенно. Не исключено, что в отдельных случаях внезапный характер могут иметь и отдельные макроэволюционные события.

Макроэволюция может идти как через микроэволюции, так и своими путями.

Сознавая недостаточность репродуктивного критерия вида, биологи все еще не могут предложить универсального определения вида как для форм с половым процессом, так и для агамных форм. 11

Случайный характер мутационной изменчивости не противоречит возможности существования определенной канализированности путей эволюции, возникающей как результат прошлой истории вида. Должна стать широко известной и теория номогенеза или эволюция на основе закономерностей, выдвинутая в 1922--1923 гг. Л.С. Бергом. Его дочь Р. Л. Берг рассмотрела проблему случайности и закономерности в эволюции и пришла к заключению, что «эволюция совершается по разрешенным путям» (Р.Л. Берг, «Генетика и эволюция», избранные труды, Новосибирск, Наука, 1993, стр.283).

Наряду с монофилией признается широкое распространение парафилии.

Реальностью является и некоторая степень предсказуемости, возможность прогнозирования общих направлений эволюции (положения новейшей биологии взяты из: Николай Николаевич Воронцов, 1999, стр. 322 и 392--393).

Уверенно можно сказать, что развитие СТЭ будет продолжаться с появлением новых открытий в области эволюции.

Заключение

Синтетическая теория эволюции не вызывает сомнений у большинства биологов: считается, что процесс эволюции в целом удовлетворительно объясняется этой теорией.

В качестве одного из критикуемых общих положений синтетической теории эволюции можно привести ее подход к объяснению вторичного сходства, то есть близких морфологических и функциональных признаков, которые не были унаследованы, а возникли независимо в филогенетически далеких ветвях эволюции организмов.

Согласно неодарвинизму, все признаки живых существ полностью определяются генотипом и характером отбора. Поэтому параллелизм (вторичное сходство родственных существ) объясняется тем, что организмы унаследовали большое количество одинаковых генов от своего недавнего предка, а происхождение конвергентных признаков целиком приписывается действию отбора. Вместе с тем, хорошо известно, что черты сходства, развивающиеся в достаточно удалённых линиях, часто бывают неадаптивны и поэтому не могут быть правдоподобно объяснены ни естественным отбором, ни общим наследованием. Независимое возникновение одинаковых генов и их сочетаний заведомо исключается, поскольку мутации и рекомбинация -- случайные процессы.

Размещено на Allbest.ru

Подобные документы

    Формирование эволюционной биологии. Использование эволюционной парадигмы в биологии в качестве методической основы под влиянием теории Ч. Дарвина. Развитие эволюционных концепций в последарвиновский период. Создание синтетической теории эволюции.

    контрольная работа , добавлен 20.08.2015

    Основные концепции биологической эволюции. Эволюция как фундаментальное понятие для объяснения возникновения и развития всего живого. Формирование эволюционной теории Ч. Дарвина. Сбор доказательств самого факта эволюции, создание синтетической теории.

    реферат , добавлен 12.03.2011

    Роль концепции ограниченной изменчивости видов в преодолении идей креацианизма и телеологии. Сущность и направления изучения эволюции. Тезис о естественном отборе как основа дарвиновской теории эволюции. Появление и развитие дарвинизма и антидарвинизма.

    реферат , добавлен 02.11.2009

    Принципы и понятия синтетической теории эволюции. Популяция как элементарная "клеточка" биологической эволюции. Общее понятие про естественный отбор. Концепции микро- и макроэволюции. Популяционно-генетические исследования в развитии эволюционной теории.

    реферат , добавлен 03.06.2012

    Теории эволюции - система естественнонаучных идей и концепций о прогрессивном развитии биосферы Земли, составляющих её биогеоценозов, отдельных таксонов и видов. Гипотезы биохимической эволюции, панспермии, стационарного состояния жизни, самозарождения.

    презентация , добавлен 08.03.2012

    Основные положения теории эволюции Ж.-Б. Ламарка и Ч. Дарвина. Неоламаркизм: сторонники автогенетических концепций. Синтетическая теория эволюции. Экологические и генетические основы эволюции. Естественный отбор, формы и способы видообразования.

    реферат , добавлен 12.02.2011

    Вехи биографии автора теории эволюции Чарльза Дарвина. История написания и издания "Происхождения видов". Основные положения эволюционного учения. Предпосылки и движущие силы эволюции. Мнения ученых о теории Ч. Дарвина. Анализ положений антидарвинизма.

    реферат , добавлен 07.12.2014

    Основные теории эволюции, положившие начало современному изучению форм естественного отбора. Общее понятие о теории эволюции Ч. Дарвина. Характеристика социобиологии как междисциплинарной науки. Теоретическое обоснование факторов эволюционного процесса.

    курсовая работа , добавлен 10.09.2013

    Ч.Р. Дарвин как британский натуралист и путешественник, автор синтетической теории эволюции и основоположник учения "дарвинизма". Детство, образование и семья будущего ученого, его значение в мировой науке. Основные положения теории происхождения видов.

    презентация , добавлен 05.03.2014

    Определение теории эволюции, обстоятельства ее появления. Понятие вида как основной единицы биологической классификации. Понятие адаптации, естественного и искусственного отбора, борьбы за существование, приспособления как основные в теории эволюции.

Современное представление об Эволюции можно сформулировать одной фразой: Эволюция как селекция в ходе Естественного отбора случайных мутаций. Она принадлежит, скорее всего, Жаку Моно, который в своей книге «Случайность и необходимость» (Le Hasard et la N cessit , 1970) рассматривает все формы жизни как результат случайных мутаций (случайность) и дарвиновского отбора (необходимость).

Жизнь на Земле возникла благодаря физическим и химическим реакциям, развивалась в процессе естественного отбора и представляет собой процесс, происходящий в два этапа.

Первый этап — это создание (в результате полового размножения (рекомбинации) мутационного процесса и случайных событий) генетической изменчивости;

Второй этап — упорядочение этой изменчивости путем отбора. Большая часть изменчивости, возникающей на первом этапе, носит случайный характер, в том смысле, что она не вызвана непосредственными потребностями организма или особенностями окружающей его среды и не связана ни с теми, ни с другими.

Второй этап естественного отбора, т.е. собственно отбор — внешний упорядочивающий принцип. В популяции, состоящей из тысяч или миллионов отличающихся друг от друга особей, некоторые будут содержать наборы генов, лучше соответствующие преобладающим в данной местности сочетаниям экологических факторов. Статистическая вероятность выживания и оставления жизнеспособных потомков для таких особей выше, чем для других членов данной популяции.

Раз искусственный отбор оказывается эффективным почти во всех случаях, когда к нему прибегают, то, следовательно, в популяциях имеется генетическая изменчивость буквально по каждому признаку данного организма.

Источником изменчивости являются три типа процессов, имеющих различную значимость и вносящих различный вклад в ожидаемый результат. Вейсманом была высказана мысль о том, что половое размножение, рождая генетическое разнообразие, создает тем самым наиболее значимый материал для Естественного отбора, повышая эволюционный потенциал вида. Большая часть имеющейся в популяциях генетической изменчивости возникает не в результате появляющихся в каждом поколении новых мутаций, а вследствие перетасовки уже накопленных мутаций, происходящей при рекомбинации. Хотя, в конечном счете, источником всей генетической изменчивости служат мутации, они возникают относительно редко. В сущности, для того, чтобы скрытая в популяции изменчивость подвергалась действию отбора на протяжении многих поколений, достаточно одного лишь процесса рекомбинации, без внесения нового генетического материала за счет мутационного процесса.

Жизнь особи начинается со слияния мужской и женской половых (гаплоидных) клеток и образования зиготы, в которой, следовательно, объединены два набора генов разного происхождения — отцовские и материнские. В мейозе отцовские и материнские хромосомы расходятся по двум клеткам случайным образом, и, кроме того, в ходе мейоза они обмениваются своей информацией тоже случайным образом. В результате каждая половая клетка получает уникальный комплект генетической информации наполовину отцовского, а наполовину материнского происхождения. Каждый родитель передает потомку только половину своей генетической информации, выбранную случайным образом. Родословная особи представляет собой дихотомически ветвящееся древо, уходящее в прошлое. Родословные разных особей в популяции переплетены в многомерную сеть. Создается общий генофонд популяции.

Каждая биологическая особь имеет своеобразную двойственную природу, слагаясь из генотипа (полного набора имеющихся у данной особи генов, которые не обязательно проявляются у нее все до единого) и фенотипа (организма, получающегося в результате трансляции генов, содержащихся в генотипе). Каждый данный генотип образует часть генофонда данной популяции; каждый фенотип конкурирует с другими фенотипами за успех в размножении. Этот успех (которым определяется «приспособленность» данной особи) не зависит от каких-то внутренних факторов, а представляет собой результат множественных взаимодействий с врагами, конкурентами, возбудителями заболеваний и другими давлениями отбора. Сочетание этих факторов отбора изменяется в зависимости от времени года, конкретных условий в том или ином году и от географического местоположения.

Эволюцию путем отбора современные научные представления рассматривают не как случайное, не как детерминированное явление; это процесс, состоящий из двух последовательных этапов и совмещающий преимущества явлений того и другого порядка. Как писал один из первых популяционных генетиков Сьюэлл Райт (Sewall Wright): «Дарвиновский процесс непрерывного взаимодействия между случайным и селективным процессами нельзя считать чем-то промежуточным между чистой случайностью и чистым детерминизмом; по своим последствиям он резко отличается в качественном отношении и от одного, и от другого».

Современный взгляд на адаптацию сводится к тому, что внешний мир ставит определенные «проблемы», которые организм должен «решать», и что механизмом, создающим эти решения, служит Эволюция путем Естественного отбора.

Адаптация — это процесс эволюционного изменения, путем которого организм обеспечивает все лучшее и лучшее «решение» поставленной перед ним «проблемы», а конечный результат — это состояние адаптированности.

«Но у всех мутаций есть то общее, что: их информационное содержание не может конкретно направляться какими бы то ни было событиями в окружающей среде; таким образом, никакая мутация не возникает для того, чтобы удовлетворять реальные или воображаемые нужды организма или соответствовать им» (32).

Состояние среды обитания живого организма ни при каких обстоятельствах не может оказывать влияния на процесс адаптации, оно все равно остается случайным.

«Несмотря на очень энергичные и не всегда очень честные попытки это опровергнуть, пока еще нет никаких оснований сомневаться в правильности утверждения, что окружающая среда не способна воздействовать «инструктивно», т. е. что она не способна запечатлевать в генетической системе живых организмов конкретную генетическую информацию» (32).

ГЛАВНАЯ ДОГМА МОЛЕКУЛЯРНОЙ БИОЛОГИИ

Главной догмой молекулярной биологии является следующее утверждение: в молекуле ДНК закодирована информация о белках , которые, в свою очередь выступая в роли ферментов, регулируют все химические реакции в живых организмах. Наследуются гены, а не признаки. Признаки или какое бы то ни было свойство организма являются реакцией гена, или, скорее, генов на существующие условия.

Живой организм больше всего похож на крупный химический завод, в котором осуществляется множество химических реакций. На погрузочные платформы поступает сырье, и транспортируются готовые продукты. Где-то в канцелярии — возможно, в виде компьютерных программ — хранятся инструкции по управлению всем заводом. Подобным образом в ядре клетки, «центре управления», хранятся инструкции, управляющие ее химическими процессами. Необходимо подчеркнуть, что современные представления молекулярной биологии основаны на том, что «центр управления» расположен именно в ядре клетки.

Третий Закон равновесной психологии утверждает прямо противоположное: «центр управления» находится в психике организма, а не в его клетке, и генетический материал клетки может быть изменен при наличии потребности в этом организма, а именно потребности в адаптации к условиям жизни. При этом не подвергается сомнению утверждение молекулярной биологии о том, что в ядре клетки хранятся инструкции, которые регулируют все химические реакции в живом организме. Но, с точки зрения равновесной психологии, пока еще недостаточно экспериментального материала, утверждающего, что организм, а именно его «центр управления», не может вносить изменения в свой генетический материал, который на следующем витке жизни будет все так же управлять химическими процессами нового живого организма.

Равновесная психология придерживается классического представления о соотношении между курицей и яйцом, компьютером и перфокартой. Немногие уже помнят, что развитие компьютерной техники начиналось с такого носителя информации, как перфокарта. Это небольшой лист плотного картона, на котором с помощью специальной машины пробиты отверстия, кодирующие последовательность действий компьютера. Фактически это упрощенный вариант музыкальной шкатулки с носителем информации в виде картонного листа, а не металлического диска. Нет никаких сомнений, что именно перфокарта (информация на ней закодированная) управляет всеми действиями столь несовершенного компьютера. Но разве возможно забыть, что при этом рядом с компьютером стоит специальная машина для пробивания отверстий на самой перфокарте.

Молекулярная биология считает, что «цыпленок — это всего лишь способ, каким яйцо создает другое яйцо» (32) . Из этого утверждения следует, что жизнь существует в виде яйца, а не в виде цыпленка, который является промежуточной формой ее существования. И с этим можно было бы согласиться, если бы факты не утверждали прямо противоположное. Отсутствие понимания механизма внешнего воздействия на генетическую информацию еще не позволяет утверждать о его полном отсутствии.

Что же мешает согласиться с главной догмой молекулярной биологии? Рассмотрим эти соображения более детально.


Постоянная скорость эволюции

Одной из причин является отсутствие связи между объемом генетического материала и скоростью эволюционирования вида. Виды, состоящие из многочисленных популяций (например, бактерии с характерными плотностями численности около миллиона особей на кубический миллилитр), должны были бы эволюционировать гораздо быстрее, чем малочисленные виды (например, крупные млекопитающие, 1 особь на кв. км). Найти подходящий организм для новой, изменившейся окружающей среды легче, если выбираешь из миллиардов, а не из нескольких особей. Легко подсчитать, что скорость образования новых видов различалась бы на десять и более порядков между крупными малочисленными и мелкими многочисленными организмами.

В то же время известно, что на самом деле все организмы эволюционируют примерно с одинаковой скоростью — независимо от размера популяции, причем средняя продолжительность жизни вида составляет несколько миллионов лет, будь то инфузория или слон.

Температуро-зависимая детерминация пола некоторых организмов

Широко известен и экспериментально доказан факт, что, изменяя температуру окружающей среды, можно изменить пол ожидаемого живого организма, если речь идет о ящерицах, черепахах и крокодилах. Пол зародышей черепах определяется температурой среды: высокая (30° С и выше) и низкая (20 °С и ниже) температуры вызывают развитие самок, а промежуточные температуры (22-28 °С) — самцов.

Этот простейший пример ставит в тупик все доводы молекулярной биологии. Существует прямое воздействие окружающей среды на генетический материал зародыша. О какой адаптации «путем селекции случайных мутаций» может идти речь, если необходимости в селекции в данном случае нет. Безусловно, можно сохранить утверждение молекулярной биологии о том, что и в данном случае реализуется одна из существующих генетических возможностей и нет прямого воздействия температуры на генетический материал и его изменение. Но исчезает понятие случайности выбора одного из имеющихся генетических вариантов, столь важное для генетики. Оно заменяется на понятие единственного и неизменного генетического варианта. Изменение температуры среды приводит и к изменению имеющегося генетического варианта на противоположный. Чтобы не выходить за рамки существующей теории, можно согласиться с тем, что зародыш имеет два варианта генетического материала, один из которых соответствует самцу, другой — самке. Температура среды один из вариантов делает на 100% нежизнеспособным. Нет необходимости утверждать, что изменение температуры приводит к изменению генетического материала и в результате к изменению пола организма. Вполне достаточно утверждения о влиянии температуры на снижение количества вариантов выбора. При этом существуют температуры среды, при которых случайность формирования пола сохраняется.

Если мы ранее упоминали о машине для пробивания перфокарт, то данный пример как раз и демонстрирует, что существует конкретный тип внешнего воздействия, который, если и не пробивает новую перфокарту, то, в любом случае, уничтожает одну из двух имеющихся. Хотя возможен вариант, при котором все же под воздействием температуры происходит реальное изменение соотношения между элементами генетического материала, в этом случае необходимо будет предположить, что генетический материал содержит все необходимые варианты. Конкретная комбинация, которая и определяет пол живого организма, активируется под воздействием параметров внешней среды. Иначе зачем существует теория регуляции активности генов, предложенная Моно и Жакобом в 1961 году и состоящая в том, что в ДНК помимо структурных (информационных) генов есть еще гены-регуляторы, следящие за включением и выключением отдельных генов или их блоков — в зависимости от «метаболических потребностей клетки», как считает молекулярная биология. Но ведь потребности могут быть не только у клетки, но и более высокого уровня. В данном примере — это потребности адаптации.

После того как молекулярные биологи открыли, что существуют не только структурные гены, но и гены-регуляторы, возникли новые эволюционные проблемы. Например, структурные гены шимпанзе и человека удивительно сходны. Не определяется ли различие между ними и нами, главным образом, генами-регуляторами? Существуют ли, кроме того, и какие-то другие типы генов?

В настоящее время развитие генетики все еще находится на начальном этапе и нет возможности с уверенностью отличать генетический материал отдельных видов друг от друга, не говоря уже о возможности различать гены, определяющие половые признаки будущего организма, и исследовать механизм их изменения под воздействием температуры внешней среды.

Употребление органов живым организмом
Существование такого фактора адаптации, как использование или неиспользование какого-то из органов, начиная с Ламарка, уже давно не подвергается сомнению, в том числе и Дарвиным. Даже если рассматривать появление органа с утраченными или, наоборот, с развитыми свойствами как результат отбора из случайно сформированных генетических вариантов, не может вызывать сомнения тот факт, что эти варианты могут появиться только в результате возникновения у организма потребности в изменении практики использования органа. Это означает, что если использование органа не изменяется, генетический вариант его другого использования появиться случайно не может. Какое это имеет отношение к случайности, если модификация органа с учетом его использования может появиться только тогда, когда в ней возникнет необходимость.

Это означает, что всем известный тюлень, который вместо ног имеет ласты с пятью пальцами, мог приобрести их только в результате смены среды обитания и исчезновения потребности в использовании конечностей в качестве ног.

«Точно так же мы можем быть уверены, что предок тюленя обладал не ластом, а ногой с пятью пальцами, приспособленными для хождения или хватания». Дарвин

Если представить себе появление ласт как продукта одной из мутаций, речь будет идти не о последствиях смены среды, а о выборе новой среды в результате смены типа конечностей. Придется представить себе, что родился генетический урод, имеющий конечности в том виде, в котором они существуют в настоящее время. От безысходности, независимо от места рождения, он должен был «уползти» в море, поскольку на суше для него больше не было возможности жить. Что является абсурдом.

Можно утверждать, что появление у организма потребности в изменении практики использования органа немедленно приводит к возникновению соответствующей генетической мутации, направленной на модификацию этого органа, а это противоречит официально существующей теории.

«Трансляция генетической информации — это процесс необратимый, и в настоящее время не существует никакого известного или хотя бы мыслимого метода, путем которого в ДНК зародыша могла бы запечатлеться информация, полученная организмом в течение его жизни. Это — главное методическое соображение, из-за которого в наши дни уже никто не верит в возможность эволюции ламаркистского типа». (32).

Смелое утверждение Нобелевского лауреата. Можно в продолжение этого утверждения добавить, что еще никто не верит в возможность варианта эволюции, предлагаемого молекулярной биологией. Современная наука не может предложить для этого случая ничего больше, чем и для случая адаптации меха организма к холоду. Организм не может по своему желанию избавиться от ставшего ему не нужным органа, как и сформировать новый, в котором он нуждается.

Современная генетика уже давно забрела в тупик. Из этого тупика, всеми доступными способами, она пытается помешать другой ветви развития, которая будет отличаться только лишь тем, что обобщения, сделанные для одного гена, не будут повторяться также и для совокупности генов, определяющих отдельную, функционально не зависимую часть живого организма.

Не сложно представить себе один или несколько генов, которые определяют длину и плотность шерсти животного и их возможную генетическую инвариантность в популяции. Это означает, что в пределах одной популяции будут существовать животные с различным качеством меха. В холодной среде выживут животные, имеющие плотный и густой мех, в теплой — имеющие короткий и не плотный. Но разве возможно этот же принцип переносить на функционально независимые части тела живого организма и утверждать, что в популяции существует достаточно вариантов генетической изменчивости, предполагающей существование не только шерсти различных видов, но и отдельных органов организма. Разве может придти в голову утверждение, что ласты у тюленя возникли только в результате отбора из имеющихся генетических вариантов плавающих в воде сухопутных животных, среди которых были представлены различные животные со всем набором возможных вариантов конечностей, но выжили только те, которые были с ластами. Безусловно, признак, соответствующий ластам, мог бы накапливаться и в течение длительного времени, но процесс накопления признаков выглядит убедительно только в теории. В реальной жизни сложно представить себе животное, которое в течение тысяч лет накапливает признак перехода от ног к ластам и не может все это время ни ходить, ни плавать.

Не вызывает сомнения существование абсолютной индивидуальности каждого живого организма. Причем в пределах одного и того же организма нельзя найти двух идентичных клеток: уникальна каждая особь, уникален каждый вид и уникальна каждая экосистема. Но не следует забывать, что у организмов, размножающихся половым путем, вид — это группа скрещивающихся между собой популяций, изолированных в репродуктивном отношении от всех других таких групп. Неспособность к скрещиванию представляет собой важный фактор, потому что она определяет статус каждого вида как обособленной и независимой эволюционной единицы; популяции, принадлежащие к одному и тому же виду, могут обмениваться между собой благоприятными генами, но не могут передавать их особям, относящимся к другим видам. Поскольку разные виды не имеют возможности обмениваться генами, они, очевидно, эволюционируют независимо друг от друга. Можно говорить о том, что вид определяет вся совокупность генов, образующих генетическую структуру конкретного организма, которая состоит из набора дискретных единиц наследственности — генов. При этом каждый из генов имеет не один, а несколько возможных вариантов своего существования.

Возьмем роман «Война и мир» и представим себе, что этот роман является абсолютно индивидуальным, хотя и не живым «организмом», сформированным из набора «дискретных единиц наследственности». Ими в данном случае будут являться буквы алфавита языка, на котором написан не биологический организм — книга. Эта книга, как и любая другая, будет иметь в своей основе некий «замысел», понимание которого позволит отличить ее от любых других, что и делает ее индивидуальным продуктом. Представим себе, что для книги существует такая же генетическая изменчивость, как и для генетической структуры живого организма: как каждый ген может существовать в нескольких вариантах, так и каждая буква книги может существовать хотя бы еще в двух вариантах. Если для живого организма такая инвариантность ни к чему не приводит и мы все равно сможем идентифицировать живое существо и причислить его к конкретному виду, поскольку признаки вида при этом утеряны не будут, то в случае с книгой замена букв в случайном порядке одним их двух вариантов приведет к катастрофическим изменениям и утере ее индивидуальности и самого «замысла», являющегося ее сутью. Можно сказать, что подобная «мутация» дискретных единиц наследственности для книги приведет к ее полному уничтожению и потере принадлежности к конкретному виду. В данном случае «почерк» автора будет ее видовой принадлежностью.

Сможет ли кто-либо утверждать, что в результате случайной перестановки каждой из букв исходного текста возможно в одном из полученных таким образом вариантов дождаться изменения цвета платья Наташи Ростовой на балу? На это могут уйти тысячи лет. Так почему молекулярная биология утверждает, что случайное использование одного из нескольких вариантов дискретной единицы наследственности может привести к появлению особи, у которой тот или иной орган тела будет иметь состояние, определяемое как результат «изменения практики его применения», и ожидание живого организма будет направлено именно на получение такого органа, что позволит обеспечить его успешное наследование? Но именно так, с точки зрения современной генетики, и описываются как смена типов конечностей у тюленей и других ластоногих, так и любая модификация органов в результате их употребления или не употребления.

Изменчивость только имеющейся генетической информации

Самый простой, но самый весомый довод против существующей «официальной» концепции Эволюции состоит в том, что генетическую изменчивость могут иметь только гены, которые уже присутствуют в генетической структуре организма. Если слон не имеет гена, который отвечает за рост шерсти, сделать из него мамонта, переместив в Арктику, не удастся: генетических вариантов модификации, в которых присутствует шерсть, взять неоткуда, поскольку в общей совокупности вариантов изменчивости вообще не будут присутствовать гены шерсти и их варианты. Основной принцип молекулярной биологии работает против нее:

«Однако идея о том, что генетическая информация порождается генетической же информацией, пронизывает всю современную биологию и лежит в основе наших представлений, например, о возникновении антител или о приспособляемости бактерий» (32).

Эта идея, «пронизывающая всю современную биологию», должна вызывать живой интерес у религии, поскольку она возвращает всю науку о живом обратно в лоно церкви. На сегодняшний день известен только один Создатель. И любое утверждение о том, что генетическая информация не может возникнуть из хаоса, также как и фраза «Там, где есть клетка, должна быть и предшествующая ей клетка» (Rudolph Virchow, 1858), автоматически относит и ген, и клетку к единственному известному Создателю, лишая Природу, отвечающую за хаос, возможности присвоить этот акт создания себе.

Современная генетика может существовать только в том случае, если будет способна найти выход из созданного ею самой тупика, отнеся объект своего изучения к закономерным процессам Природы, разорвав цепь и предоставив живому организму возможность создания своего генетического отпечатка. Кто в этом случае будет ответственным за создание жизни как таковой — это уже другой вопрос, но найти на него ответ будет, несомненно, проще, чем на вопрос: для чего и кому нужен генетический отпечаток живого объекта, если самого объекта еще нет? Если самопроизвольное зарождение жизни вполне имеет логику самостоятельного существования, то самопроизвольное зарождение генетического отпечатка жизни совершенно абсурдно. Зарождение объектов, обладающих скрытым внутренним вторичным «замыслом», помимо явного первичного, существовать не может, вернее, может, но у такого объекта должен быть Создатель. Предположение о первичности возникновения дискретной единицы наследственности эквивалентно предположению о самозарождении перфокарты с программой управления компьютером.

27. Дарвин Ч. Сочинения / Пер. С. Л. Соболя, Под ред. акад. Е. Н. Павловского., М.: Изд. АН СССР, 1953.

32. Медавар П., Медавар Дж. Наука о живом. Современные концепции в биологии.



Проблема наследования изменений была ключевой для судьбы дарвиновской теории. Во времена Дарвина господствовали представления о слитной наследственности. Наследственность объяснялась слиянием "кровей" предковых форм. "Крови" родителей смешиваются, давая потомство с промежуточными признаками. Именно с этой позиции выступал против теории Дарвина математик Ф. Дженкин. Он считал, что накопление благоприятных уклонений невозможен, так как при скрещивании они растворяются, разбавляются, становятся пренебрежимо малыми и, наконец, исчезают вовсе. Дарвин, который нашел ответы на большинство возражений против своей теории, выдвинутых его современниками, этим возражением был поставлен в тупик.

Выход из этого тупика давала теория корпускулярной, дискретной наследственности, созданная Г. Менделем (1822-1884). Наследственность дискретна. Каждый родитель передает своему потомку одинаковое количество генов. Гены могут подавлять или модифицировать проявления других генов, но не способны изменять информацию, записанную в них. Иначе говоря, гены не изменяются при слиянии с другими генами и передаются следующему поколению в той же форме, в какой они получены от предыдущего. В случае неполного доминирования мы действительно наблюдаем у потомков первого поколения промежуточное проявление признаков родителей. Но во втором и последующих поколениях родительские признаки могут вновь проявиться в неизменном виде.

В 1920-х годах был осуществлен синтез дарвинизма и генетики. Решающую роль в осуществлении этого синтеза сыграл выдающийся отечественный генетик С.С. Четвериков. На основании своих работ по анализу природных популяций он пришел к пониманию механизмов накопления и поддержания индивидуальной изменчивости. Одновременно с С.С. Четвериковым к синтезу идей корпускулярной генетики с классическим дарвинизмом пришли Р. Фишер, Дж. Холдейн и С. Райт. Крупный вклад в формирование современной синтетической теории эволюции внесли зоолог Э. Майри палеонтолог Дж. Симпсон. Теория естественного отбора была развита в трудах выдающегося отечественного ученого И. И. Шмальгаузена. Основы экологии, биогеографии, филогенетической систематики и этологии (науки о поведении животных), заложенные в трудах Дарвина, развились в самостоятельные науки и, в свою очередь, внесли важнейший вклад в формирование современных представлений о путях, механизмах и закономерностях эволюции. Важнейшие успехи эволюционной биологии в последние годы были достигнуты, благодаря активному применению в эволюционных исследованиях идей и методов молекулярной генетики и биологии развития. В резуль­тате возникла современная синтетическая теория эволю­ции (часто используется сокращение СТЭ).

Современная теория органической эволюции отличается от дарвиновской тем, что в ней элементарной эволюционной единицей является популяция, а не вид. Популяцией называют совокупности особей одного вида, длительно населяющих определенную часть ареала, свободно скрещивающихся друг с другом и дающих плодовитое потомство, относительно обособленные от других совокупностей этого же вида (от лат. populus - народ, население). Вид представляет собой качественный этап эволюции, который закрепляет ее существенный результат. В ходе эволюции меняется набор генотипов в генофонде популяций. Одни генотипы распространяются, а другие становятся редкими и постепенно исчезают.

Сохранение генофонда популяции описывается основным законом популяционной генетики, сформулированным в 1908 году Дж. Харди и Г. Вайнбергом. Согласно этому закону первоначальные частоты генов в популяции сохраняются, если популяция состоит из бесконечно большого числа особей, которые скрещиваются свободно при отсутствии мутаций, избирательной миграции организмов и давления естественного отбора. Такая идеализированная популяция, называемая генетически стабильной, эволюционировать не будет. В реальной природе условия закона Харди - Вайнберга нарушены:численность организмов конечна, свободное скрещивание ограничено изоляционными барьерами, которые препятствуют случайному подбору брачных пар. Имеют место мутации, отбор, приток и отток из популяции особей с различными генотипами. В соответствии с этим элементарным эволюционным явлением, с которого начинается образование видов, считается изменение генетического состава (генофонда) популяции. Все события и процессы, способствующие преодолению генетической инертности популяций и приводящие к изменению их генофондов, называют элементарными эволюционными факторами. Важнейшими элементарными факторами эволюции являются мутационный процесс, популяционные волны, изоляция и естественный отбор.

Эволюция - единый процесс. Но в СТЭ различают два ее уровня:микроэволюцию (на популяционно-видовом уров­не) и макроэволюцию (на надвидовом уровне).

эволюция естественный отбор популяция

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Рональда Фишера, Джона Б. С. Холдейна-младшего и Сьюэла Райта, учение Дарвина приобрело прочный генетический фундамент.

Статья С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926) по сути стала ядром будущей синтетической теории эволюции и основой для дальнейшего синтеза дарвинизма и генетики. В этой статье Четвериков показал совместимость принципов генетики с теорией естественного отбора и заложил основы эволюционной генетики. Главная эволюционная публикация С. С. Четверикова была переведена на английский язык в лаборатории Дж. Холдейна, но никогда не была опубликована за рубежом. В работах Дж. Холдейна, Н. В. Тимофеева-Ресовского иФ. Г. Добржанского идеи, выраженные С. С. Четвериковым, распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половиныXX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации -- новые варианты генов.

Влияние генов на строение и функции организма плейотропно: каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения.

Поэтому рекомбинация, порождая всё новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются прежде всего такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Эта идея нашла выражение в труде Р. Фишера. Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов. Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида.

Осуществление эволюции необходимо наличие трёх процессов:

  • 1. мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;
  • 2. рекомбинационного, создающего новые фенотипы особей;
  • 3. селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.

Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-младшего, издавшего её в 1932 году под названием. Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции.

Крупные эволюционные новшества очень часто возникают на основе неотении (сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека («голая обезьяна»), эволюцию таких крупных таксонов, какграптолиты и фораминиферы. В 1933 году учитель Четверикова Н. К. Кольцов показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Она ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа.

Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ -- в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского. Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная специализация Добржанского позволила ему первому перебросить твёрдый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр).

Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» -- тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввёл в широкий научный оборот полузабытое уравнение Харди-Вайнберга. Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, то есть адаптивно-нейтральным путём.

Случайные статьи

Вверх