Cправочные данные по пожароопасным свойствам веществ и материалов. Пожароопасные свойства веществ и материалов Сообщения зарегистрированных пользователей

Пожаровзрывоопасность веществ и материалов - это совокупность свойств, характеризующих их способность к возникновению и распространению горения. Следствием горения в зависимости от его скорости и условий протекания может быть пожар (диффузионное горение) или взрыв (дефлаграционное горение предварительно перемешанной смеси горючего с окислителем).

При определении пожаровзрывоопасности веществ и материалов различают:

  • газы - вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 кПа превышает 101,3 кПа;
  • жидкости - вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 кПа меньше 101,3 кПа. К жидкостям относят также твердые плавящиеся вещества, температура плавления и каплепадения которых меньше 50 °С;
  • твердые вещества и материалы - индивидуальные вещества и их смесевые композиции с температурой плавления или каплепадения больше 50 °С, а также вещества, не имеющие температуры плавления (например, древесина, ткани и т.п.);
  • пыли - диспергированные твердые вещества и материалы с размером частиц менее 850 мкм.

Перечень показателей, характеризующих пожаро-, взрывоопасность веществ приведен в табл. 6.1.

Таблица 6.1

Показатели взрыво-, пожароопасности веществ разных агрегатных состояний

Агрегатное состояние

Показатель

жидкость

состояние

Группа горючести

Температура вспышки

Температура воспламенения

Температура самовоспламенения

Концентрационные пределы воспламенения

Температурные пределы воспламенения

Самовозгорание

Минимальная энергия зажигания

Способность взрываться и гореть при взаимодействии с водой, кислородом и другими веществами

Скорость распространения пламени

Скорость выгорания

Минимальное взрывоопасное содержание кислорода

Максимальное давление взрыва

Скорость нарастания давления

Группа горючести - показатель, который применим для всех агрегатных состояний.

Горючесть - способность вещества или материала к горению. По горючести вещества и материалы подразделяются на три группы.

  • 1) негорючие (несгораемые) - вещества и материалы, не способные к горению на воздухе. Негорючие вещества могут быть пожароопасными (например, окислители, а также вещества, выделяющие горючие продукты при взаимодействии с водой, кислородом воздуха или друг с другом);
  • 2) трудногорючие (трудносгораемые) - вещества и материалы, способные возгораться в воздухе от источника зажигания, но не способные самостоятельно гореть после его удаления;
  • 3) горючие (сгораемые) - вещества и материалы, способные самовозгораться, а также возгораться от источника зажигания и самостоятельно гореть после его удаления.

Температура вспышки (T RCU) - наименьшая температура конденсированного вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары, способные вспыхнуть в воздухе при поднесении к ним внешнего источника зажигания (пламени или нагретого до высокой температуры тела). Устойчивое горение при этом не устанавливается вследствие малой скорости испарения горючей жидкости.

Температура вспышки показывает, при какой температуре вещество подготовлено к воспламенению и становится огнеопасным в открытом сосуде.

В зависимости от температуры вспышки горючие жидкости (ГЖ) подразделяются:

  • на легковоспламеняющиеся жидкости (ЛВЖ) с температурой вспышки не свыше 61 °С (в закрытом тигле) или не свыше 66 °С (в открытом тигле);
  • горючие жидкости (ГЖ) с температурой вспышки паров выше соответственно 61 и 66 °С.

Легковоспламеняющиеся жидкости в свою очередь делятся на три разряда:

  • 1) особо опасные ЛВЖ - имеющие температуру вспышки от -18 °С и ниже в закрытом тигле или -13 °С и ниже в открытом;
  • 2) постоянно опасные ЛВЖ - имеющие температуру вспышки выше -18 °С до +23 °С в закрытом тигле или выше -13 °С до +27 °С - в открытом;
  • 3) опасные при повышенной температуре ЛВЖ. К данному разряду относятся жидкости с температурой вспышки более +23 °С до +61 °С включительно (в закрытом тигле) или более +27 °С до +66 °С - в открытом.

Температура воспламенения (Г воспл) - наименьшая температура вещества, при которой в условиях специальных испытаний оно выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается способность воспламениться при поднесении внешнего источника воспламенения.

Разница между температурой вспышки и воспламенения для ЛВЖ составляет 1-2 °С, для ГЖ - до 10-15 °С и более.

Горение сопровождается выделением тепла, продуктов сгорания и свечением. Для устойчивого горения необходимо, чтобы теплообразование при этом процессе было больше теплоотдачи в окружающую среду. Если в результате горения образуются газы, то горение сопровождается пламенем.

Процесс воспламенения горючих газов и жидкостей без поднесения к ним открытого огня, а только под влиянием внешнего воздействия тепла называется самовоспламенением.

Температура самовоспламенения - самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермической реакции, заканчивающейся пламенным горением.

Концентрационные пределы распространения пламени (воспламенения) - тот интервал концентраций, в котором возможно горение смесей горючих паров и газов с воздухом или кислородом.

Нижний (верхний) концентрационный предел распространения пламени - минимальное (максимальное) содержание горючего в смеси горючее вещество - окислительная среда, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания. Внутри этих пределов смесь горюча, а вне их - смесь гореть не способна.

Температурные пределы распространения пламени (воспламенения) -

такие температуры вещества, при которых его насыщенные пары образуют в конкретной окислительной среде концентрации, равные соответственно нижнему (нижний температурный предел) и верхнему (верхний температурный предел) концентрационным пределам распространения пламени.

Концентрационные и температурные пределы распространения пламени - важные параметры, учитываемые при создании безопасных условий ведения технологических процессов. Они необходимы при расчетах взрывобезопасных концентраций газов и паров в оборудовании и коммуникациях, безопасных температурных режимов работы оборудования, проектировании вентиляционных систем, оценке аварийных ситуаций и др.

Минимальная энергия зажигания - один из важных параметров, используемых при обеспечении пожаро- и взрывобезопасности технологических процессов при переработке горючих веществ и электростатической искробезопасности. Она может служить характеристикой чувствительности к воспламенению горючих смесей электрическими разрядами.

Минимальным взрывоопасным содержанием кислорода называется такая его концентрация в горючей смеси, ниже которой воспламенение и горение смеси становятся невозможными при любой концентрации горючего в смеси.

Минимальное взрывоопасное содержание кислорода используется при разработке мероприятий для обеспечения пожаро- и взрывобезопасности в соответствии с действующими ГОСТами, при расчетах пожаро- и взрывобезопасных режимов работы технологического оборудования, при выборе безопасных условий работы пневмотранспорта.

Температура тления - температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления, заканчивающихся возникновением тления. Значение температуры тления используют при разработке мероприятий для обеспечения пожаро- и взрывобезопасности технологического процесса, а также при экспертизах причин пожаров.

Температура самонагревания - самая низкая температура вещества, при которой самопроизвольный процесс его нагревания не приводит к тлению или пламенному горению. Этот параметр используют при выборе безопасных условий нагрева вещества.

Условия теплового самовозгорания - экспериментально выявленная зависимость между температурой окружающей среды, массой вещества и временем до момента самовозгорания, является одним из параметров, характеризующих пожаро- и взрывоопасность твердых веществ и аэрозолей.

Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами - качественный показатель, который характеризует особую пожарную опасность некоторых веществ.

Это свойство веществ применяют при определении категории производств по взрыво- и пожароопасности, а также при выборе безопасных условий проведения технологических процессов и условий совместного хранения и транспортирования веществ и материалов.

Является нормативным документом по пожарной безопасности в области стандартизации добровольного применения и устанавливает методы определения классификационных признаков отнесения зданий (или частей зданий между противопожарными стенами - пожарных отсеков), сооружений, строений и помещений (далее по тексту - зданий и помещений) производственного и складского назначения класса Ф5 к категориям по взрывопожарной и пожарной опасности, а также методы определения классификационных признаков категорий наружных установок производственного и складского назначения (далее по тексту - наружные установки) по пожарной опасности.

Корольченко А. Я. Категорирование помещений и зданий по взрывопожарной и пожарной опасности / Александр Яковлевич Корольченко, Дмитрий Олегович Загорский. — М.: Изд-во “Пожнаука”, 2010. — 118 с. : ил. ISBN 978-5-91444-015-9

В учебном пособии изложены принципы категорирования помещений и зданий по взрывопожарной и пожарной опасности , содержащиеся в современных нормативных документах. На примерах конкретных помещений рассмотрено использование требований нормативных документов к установлению . Показана возможность изменения категорий помещений путем изменения технологии или внедрения инженерных мероприятий по снижению уровня взрывопожароопасности и повышению надежности технологического оборудования и процессов.

Пособие рассчитано на студентов высших учебных заведений, обучающихся по специальностям “Пожарная безопасность”, “Безопасность технологических процессов и производств”, “Безопасность жизнедеятельности в техносфере”, студентов строительных вузов и факультетов, обучающихся по специальности “Промышленное и гражданское строительство”, сотрудников научно-исследовательских, проектных организаций и нормативно-технических служб, ответственных за обеспечение пожарной безопасности.

Баратов. Справочник. Пожаро-взрывобезопасность веществ и материалов.

Приведены физико-химические свойства газообразных, жидких и твердых веществ. Рассмотрены показатели их пожаровзрывоопасности. Приведены численные значения показателей пожаровзрывоопасности свыше 6000 веществ и материалов (в двух книгах).
Описаны средства тушения пожаров. Даны технические характеристики их, особенности применения.
Для инженерно-технических работников пожарной охраны, научно-исследовательских и проектных организаций.

Третье издание SFPE руководство пожарной охраны представляет собой обновление с добавлением некоторых новых важных предмета . К раткое описание теоретических основ пожарной охраны инженерии в сочетании с материалом на инженерных расчетов и практики . Примеры включают новую главу для расчета тепловых потоков к поверхности .

Программы

FireGuard 2 Professional — программа для определения категорий помещений и зданий по взрывопожарной и пожарной опасности, помещений и зданий. Классификация пожароопасных и взрывоопасных зон по ПУЭ и ФЗ №123.

Фогард К - Программа по определению категорий помещений и зданий по взрывопожарной и пожарной опасности.

Введение 2

Пожароопасные свойства материалов и веществ 3

Показатели пожароопасности веществ 3

Показатели взрыво-пожароопасности веществ разных агрегатных состояний 4

Пожар как фактор техногенной катастрофы 4

Ландшафтные пожары 8

Статистические данные о пожарах 9

Организация пожарной охраны 11

Меры пожарной профилактики 11

Противопожарный инструктаж и пожарно-технический минимум. 12

Пожарная безопасность на территории предприятия 12

Организация пожарной охраны на предприятиях торговли 14

Огнетушащие вещества и аппараты пожаротушения 14

Классификации 18

Классификация помещений и зданий по степени взрывопожароопасности 18

Классификация взрыво и пожароопасных зон помещения в соответствии с ПУЭ 19

Классификация токсичных и пожароопасных свойств веществ 20

  1. Введение

Пожары наносят громадный материальный ущерб и в ряде случаев сопровождаются гибелью людей. Поэтому защита от пожаров является важнейшей обязанностью каждого члена общества и проводится в общегосударственном масштабе.

Противопожарная защита имеет своей целью изыскание наиболее эффективных, экономически целесообразных и технически обоснованных способов и средств предупреждения пожаров и их ликвидации с минимальным ущербом при наиболее рациональном использовании сил и технических средств тушения.

Пожарная безопасность – это состояние объекта, при котором исключается возможность пожара, а в случае его возникновения используются необходимые меры по устранению негативного влияния опасных факторов пожара на людей, сооружения и материальных ценностей

Пожарная безопасность может быть обеспечена мерами пожарной профилактики и активной пожарной защиты. Пожарная профилактика включает комплекс мероприятий, направленных на предупреждение пожара или уменьшение его последствий. Активная пожарная защита  меры, обеспечивающие успешную борьбу с пожарами или взрывоопасной ситуацией.

  1. Пожароопасные свойства материалов и веществ

Почти во всех производствах применяются вещества, способные воспламеняться и гореть, а в некоторых случаях - образовывать с воздухом взрывоопасные смеси.

Горение – быстропротекающая реакция окисления, сопровождающаяся выделением тепла и (обычно) света.

Химическая реакция горения всегда является сложной и состоит из ряда элементарных химических превращений. Химическое превращение при горении протекает одновременно с физическими процессами: переносом тепла и массы. Поэтому скорость горения всегда определяется как условиями тепло- и массопередачи, так и скоростью протекания химических превращений.

Для возникновения горения необходимо наличие: горючего вещества, окислителя и импульса. Импульсом может быть: открытый огонь, искра (электрическая, статическая или от удара металлических предметов, молния, нагрев вещества выше температуры его самовоспламенения и др.).

Горючие вещества бывают в трех агрегатных состояниях: твердом, жидком и газообразном (возможно и 4-ое состояние вещества - плазма).

При горении твердых материалов горючее вещество и воздух не перемешаны, имеют поверхность раздела, и горение протекает в так называемом диффузионном режиме, т.е. скорость реакции определяется скоростью подвода (отвода) продуктов реакции (лимитирующая стадия - диффузия).

Если молекулы кислорода хорошо перемешаны с горючим веществом - горение определяется кинетикой химической реакции (обмен электронами), а режим - кинетическим. Горение такой смеси может происходить в виде взрыва.

Причинами взрывов и пожаров могут быть не только халатное и небрежное обращение с открытым огнем, но и ошибки в проектировании, нарушение технологического процесса, неисправность, перегрузка или неправильное устройство электрических сетей, производственного оборудования, разряды статического электричества, неисправность установок и систем.


Приведены физико-химические свойства газообразных, жидких и твердых веществ. Рассмотрены показатели их пожаровзрывоопасности. Приведены численные значения показателей пожаровзрывоопасности свыше 6000 веществ и материалов (в двух книгах).

Описаны средства тушения пожаров. Даны технические характеристики их, особенности применения.

Для инженерно-технических работников пожарной охраны, научно-исследовательских и проектных организаций.

ПРЕДИСЛОВИЕ

Для решения вопросов обеспечения безопасности технологических процессов, зданий и сооружений, а также обеспечения безопасности людей во время пожаровнеобходимо иметь данные о показателях пожаро - и взрывоопасности веществ и средствах их тушения.

Использование этих данных при разработке систем предупреждения пожаров и систем противопожарной защиты регламентировано Государственнымистандартами в области пожаро - и взрывобезопасности (ГОСТ 12.1.004—88. Пожарная безопасность. Общиетребования; ГОСТ 12.1.010.76. Взрывобезопасность. Общие требования), строительными нормами и правилами.

В соответствии с требованиями ГОСТ 1.26—77сведения о пожаро- и взрывоопасных свойствах должны быть в разделе «требования безопасности» стандартов итехнических условий на вещества и материалы.

Показатели пожаро - и взрывоопасности веществ существенно зависят от метода их определения. Поэтому в нашей стране введена единая система оценкипожарной опасности (ГОСТ 12.1.044—84 Пожаро - и взрывоопасность веществ и материалов. Номенклатура показателей и методы их определения). Введению этогостандарта предшествовала разработка Всесоюзным научно - исследовательским институтом противопожарной обороны (ВНИИПО) совместно с рядом организаций АН СССР, Высшей школы и отраслевых институтов (Минхимпрома, Минмедпрома и других министерств) методик экспериментального и расчетного определения показателей пожаро - и взрывоопасности.

До введения этого стандарта для оценки пожаро- и взрывоопасности веществ использовали различные методики, часто дающие несопоставимые результаты.

Поэтому основная задача состояла в том, чтобы критически оценить накопленный во ВНИИПО фонд данных (более чем 12 000) о пожаро- и взрывоопасности различных веществ и материалов. Указанный фонд создан на основе экспериментальных данных ВНИВИ, ВНИИПАВ, ВНИИПО, ВНИИСДВ, ВНИИТБХП,ВНИИХимпроект, ВНИИХСЗР, «Гиредмет», ГОСНИИХЛОРПРОЕКТ, КНИИХП НПО «Карболит», Купавинском филиале ВНИХФИ, ЛТИ им. Ленсовета, МИТХТ им. М. В. Ломоносова, МИХМ, МХТИ им. Д. И. Менделеева, НИИМСК, УкрНИИКП, ЦНИЛ по газобезопасности, Челябинском филиале ГИПИЛКП, а также литературных данных, полученных методами, принципиально не отличающимися от методов,изложенных в ГОСТ 12.1.044—84.

Систематизация помещенных в справочник данных выполнена по разработанной по ВНИИПО методике оценки показателей пожаро- и взрывоопасностивеществ и материалов. Результаты показали, что экспериментальные данные имеют различную степень точности. Это обусловлено использованием разными авторами неодинаковых методов исследования и различной чистотой исходных веществ.

Приведенные в справочнике численные данные о пожаровзрывоопасных свойствах веществ и материалов и средствах их тушения в соответствии с ГОСТ 8.310—78 относятся к категории информационных.

Все замечания и предложения по улучшению справочника будут приняты авторским коллективом сблагодарностью.

2. СИСТЕМА ОЦЕНКИ ПОЖАРО - И ВЗРЫВООПАСНОСТИ ВЕЩЕСТВ И МАТЕРИАЛОВ

2.1. ПОКАЗАТЕЛИ ПОЖАРО - И ВЗРЫВООПАСНОСТИ ВЕЩЕСТВ И МАТЕРИАЛОВ

Отечественная система оценки пожарной опасности веществ и материалов регламентирована ГОСТ 12.1.044—84 «Пожаровзрывоопасность веществ иматериалов. Номенклатура показателей и методы ихопределения». В соответствии с этим стандартом при оценке пожарной опасности веществ различают: газы — вещества, абсолютное давление паровкоторых при 50 °С равно или более 300 кПа иликритическая температура которых менее 50 °С; жидкости — вещества с температурой плавления (каплепадения) менее 50 °С; твердые вещества и материалы с температуройплавления (каплепадения) более 50 °С; пыли — диспергированные твердые вещества и материалы с частицами размером менее 850 мкм.

Перечень показателей, характеризующих пожаро - и взрывоопасность веществ, приведен в табл. 2.1; определения показателей даны в табл. 2.2.

2.2. МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ ПОЖАРО - И ВЗРЫВООПАСНОСТИ ВЕЩЕСТВ И МАТЕРИАЛОВ

Группа горючести. Методы определения горючести основаны на создании температурных условий, наиболее способствующих горению, и оценке поведенияиспытуемых веществ и материалов в этих условиях.

Горючесть газов определяют по наличиюконцентрационных пределов распространения пламени: если газ имеет пределы распространения пламени, то его относят к горючим; если не имеет — к негорючим. Если газ не имеет пределов распространения пламени, но имеет температуру самовоспламенения, то его считают трудногорючим. Следует помнить, что трудногорючий газ при нагреве может стать горючим.

Группу горючести жидкостей и плавящихся твердых веществ определяют с помощью прибора, схемакоторого показана на рис. 2.1. В качестве нагревательного устройства используют тигельную электропечь,позволяющую создавать температуру до 900 °С.

При проведении испытаний электропечь нагревают до 900± 10 °С. Образец массой 10 г помещают в тигель и опускают в печь. Продолжительность нагревания образца составляет примерно 3 мин. Если образец втечение этого времени не воспламеняется или начинает интенсивно кипеть без воспламенения, испытаниепрекращают, а результат считают отказом.

Испытанию подвергают пять образцов исследуемого вещества. Если хотя бы в одном из пяти испытаний образец воспламенится, ему дают возможностьразгореться, затем тигель с горящим образцом выносят из электропечи, включают секундомер и определяют продолжительность самостоятельного горения образца.

Если образец вне печи самостоятельно горит менее 5 с, то исследуемое вещество относят к группетрудногорючих. При времени самостоятельного горения 5 с и более проводят дополнительное испытание для определения температуры воспламенения и группы горючести. При наличии температуры воспламенения вещество относят к горючим, в отсутствие — к трудногорючим. Горючесть твердых материалов определяют по трем независимым методам. Группу горючих материалов выделяют по методу «огневой трубы», группутрудногорючих — по методу керамической трубы (КГ) игруппу негорючих — по методу испытаний на негорючесть. Схема прибора «огневая труба» представлена на рис. 2.2. Прибор состоит из камеры горения,представляющей собой стальную трубу внутренним диаметром 50 мм и длиной 165 мм. Подготовленный к испытанию образец подвешивают на крючок держателя по центру камеры. Под образец устанавливают зажженнуюгорелку с высотой пламени 40 мм. После зажигания образца горелку убирают и фиксируют время самостоятельного горения. Максимальное время зажигания образца не превышает 2 мин. После завершения эксперимента определяют потерю массы образца. Материал относят к группе горючих при выполнении одного из следующих условий: самостоятельное пламенное горение или тление хотя бы у одного из шести испытанных образцовпродолжается более 60 с, и потеря массы превышает 20 %; самостоятельное горение продолжается менее 60 с, но пламя распространяется по всей поверхности образца при одновременной потере массы не менее чем у двух образцов более 90 %; самостоятельное пламенное горение композиционных материалов, состоящих из горючих и негорючих компонентов, продолжается менее 60 с, но пламя распространяется по всей поверхности образца, и при этомвыгорает вся органическая часть материала; самостоятельное пламенное горение композиционных материалов продолжается более 60 с, потеря массы составляет менее 20 %. В этом случае потерю относят только к массе органической части материала.

Если указанные условия не выполняются, тоиспытания материала продолжают по методу КТ. Схема прибора КТ показана на рис. 2.3. Прибор состоит изкерамической огневой камеры прямоугольной или цилиндрической формы высотой 300 мм. Площадь поперечного сечения огневой камеры составляет 1,44- 102 см.Камера установлена на металлическую цилиндрическую подставку, снабженную поворотной заслонкой длярегулирования подачи воздуха в зону горения и поддоном для сбора твердых продуктов сгорания. Для испытаний готовят четыре образца исследуемого материала длиной 150 мм, шириной 60 мм и фактической толщиной, не превышающей 10 мм. Образцы пенопластов должны быть толщиной 30 мм. Масса образца должна быть не менее 6 г. Сыпучие вещества и материалы испытывают в корзиночках.

Внутреннюю поверхность камеры горения передкаждым испытанием покрывают двумя-тремя слоями алюминиевой фольги.

Исследуемый образец закрепляют в держателе,зажигают газовую горелку и включают потенциометр. Ротаметром устанавливают такой расход газа в газовой горелке, при котором контролируемая в течение 2—3 мин температура газообразных продуктов горения в центре верхнего патрубка зонта составляет 200± ±5 °С. Затем в камеру горения на 5 мин вводят исследуемый образец для выявления времени зажигания, определяемого по характеру температурной кривой, записанной на диаграммной ленте потенциометра.

За время зажигания принимают время достижения максимальной температуры. После определения времени зажигания проводят три испытания с образцами исследуемого материала и одно тарировочное испытание с асбестоцементной плитой, воздействуя на каждый образец пламенем горелки втечение найденного времени зажигания. После истечения времени зажигания прекращают подачу газа в горелку и оставляют образец в огневой камере до остывания на 20 мин, считая с момента ввода образца внутрь камеры.

При проведении испытаний образец материалапомещают в держатель и опускают на 20 мин внутрь нагретой печи. Через каждые 10 с фиксируют показания трех термопар. Рабочий спай первой термопарырасположен на расстоянии 10 мм от стенки печи посередине зоны постоянной температуры, рабочий спай второй термопары находится в центре образца, рабочий спай третьей — на поверхности образца (по середине его высоты). Образец взвешивают до и после проведения испытаний. Проводят пять параллельныхиспытаний.

Материал относят к негорючим, если выполняются следующие условия: среднее из всех максимальных показаний термопар в печи и на наружной поверхности образца непревышает более чем на 50 °С первоначально установленную температуру печи; средняя потеря массы образцов не превышает 50 % их начальной массы до введения в печь; среднее из всех отмеченных максимальных значений продолжительности пламенного горения не превышает 10 с.

Температура вспышки. Для определения температуры вспышки заданную массу вещества нагревают с заданной скоростью, периодически зажигая выделяющиеся пары и визуально оценивая результаты зажигания. Температуру вспышки экспериментально определяют в приборах закрытого (з. т.) * и открытого (о. т.) типов.

Схема прибора закрытого типа показана на рис. 2.5. В качестве реакционного сосуда используют металлический тигель с внутренним диаметром 51 мм и высотой 56 мм. Тигель закрыт крышкой, на которойрасположены: зажигательное устройство, заслонка споворотным устройством и мешалка. Тигель, крышку и мешалку изготавливают из материалов, не вступающих в химическое взаимодействие с испытуемыми веществами, например из нержавеющей стали.

Перед проведением измерений образцы легколетучих жидкостей с температурой кипения до 100 °С охлаждают до 0 °С, образцы вязких жидкостей нагревают до текучести. Вначале проводят предварительное испытание для получения ориентировочного значениятемпературы вспышки.

...
Случайные статьи

Вверх